ダウンロード数: 92

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
aCCESS.2020.2966657.pdf941.97 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorDeng, Wangdongen
dc.contributor.authorKamiya, Shotaroen
dc.contributor.authorYamamoto, Kojien
dc.contributor.authorNishio, Takayukien
dc.contributor.authorMorikura, Masahiroen
dc.contributor.alternative山本, 高至ja
dc.contributor.alternative西尾, 理志ja
dc.contributor.alternative守倉, 正博ja
dc.date.accessioned2020-11-17T05:14:22Z-
dc.date.available2020-11-17T05:14:22Z-
dc.date.issued2020-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/2433/259097-
dc.description.abstractWe propose a sophisticated channel selection scheme based on multi-armed bandits and stochastic geometry analysis. In the proposed scheme, a typical user attempts to estimate the density of active interferers for every channel via the repeated observations of signal-to-interference power ratio (SIR), which demonstrates the randomness induced by randomized interference sources and fading effects. The purpose of this study involves enabling a typical user to identify the channel with the lowest density of active interferers while considering the communication quality during exploration. To resolve the trade-off between obtaining more observations on uncertain channels and using a channel that appears better, we employ a bandit algorithm called Thompson sampling (TS), which is known for its empirical effectiveness. We consider two ideas to enhance TS. First, noticing that the SIR distribution derived through stochastic geometry is useful for updating the posterior distribution of the density, we propose incorporating the SIR distribution into TS to estimate the density of active interferers. Second, TS requires sampling from the posterior distribution of the density for each channel, while it is significantly more complicated for the posterior distribution of the density to generate samples than well-known distribution. The results indicate that this type of sampling process is achieved via the Markov chain Monte Carlo method (MCMC). The simulation results indicate that the proposed method enables a typical user to determine the channel with the lowest density more efficiently than the TS without density estimation aided by stochastic geometry, and ε-greedy strategies.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/en
dc.subjectChannel selectionen
dc.subjectMarkov chain Monte Carlo methoden
dc.subjectmulti-armed banditen
dc.subjectstochastic geometryen
dc.subjectThompson samplingen
dc.titleThompson Sampling-Based Channel Selection through Density Estimation aided by Stochastic Geometryen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE Access-
dc.identifier.volume8-
dc.identifier.spage14841-
dc.identifier.epage14850-
dc.relation.doi10.1109/aCCESS.2020.2966657-
dc.textversionpublisher-
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dcterms.accessRightsopen access-
datacite.awardNumberJP18H01442-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。