このアイテムのアクセス数: 180

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
1.4965835.pdf328.28 kBAdobe PDF見る/開く
タイトル: Pulsed neutron time-dependent intensity modulation for quasi-elastic neutron scattering spectroscopy
著者: Oda, T.
Hino, M.
Kitaguchi, M.
Geltenbort, P.
Kawabata, Y.
著者名の別形: 小田, 達郎
日野, 正裕
川端, 祐司
発行日: 27-Oct-2016
出版者: AIP Publishing
誌名: Review of Scientific Instruments
巻: 87
号: 10
論文番号: 105124
抄録: We propose a basic formula and demonstration for a high-resolution quasi-elastic neutron scattering (QENS) by combining the time-of-flight (TOF) method with Modulation of Intensity by Zero Effort (MIEZE) type neutron spin echo spectroscopy. The MIEZE technique has the potential to develop a unique approach to study on slow dynamics of condensed matter; however, the energy resolution is limited owing to the hypersensitivity of the MIEZE signal contrast to the echo condition, which is strongly affected by the alignment of the instruments and the sample. The narrow allowance of the optimal alignment is a major obstacle to the wide use of this technique. Combining the TOF method with MIEZE (TOF-MIEZE), the hypersensitivity of MIEZE signals is significantly alleviated with a short pulsed beam. This robustness is very useful to optimize experimental alignments and enables accurate measurements of QENS. The experimental results demonstrate the characteristic of the TOF-MIEZE technique and are well described by the formula presented in this study.
著作権等: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in ['Review of Scientific Instruments' 87, 105124 (2016)] and may be found at https://aip.scitation.org/doi/10.1063/1.4965835
The full-text file will be made open to the public on 27 October 2017 in accordance with publisher's 'Terms and Conditions for Self-Archiving'
URI: http://hdl.handle.net/2433/259243
DOI(出版社版): 10.1063/1.4965835
PubMed ID: 27802718
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。