このアイテムのアクセス数: 236
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.neunet.2020.03.024.pdf | 501.59 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Liu, Pengyu | en |
dc.contributor.author | Melkman, Avraham A. | en |
dc.contributor.author | Akutsu, Tatsuya | en |
dc.contributor.alternative | 劉, 鵬宇 | ja |
dc.contributor.alternative | 阿久津, 達也 | ja |
dc.date.accessioned | 2020-12-03T06:14:56Z | - |
dc.date.available | 2020-12-03T06:14:56Z | - |
dc.date.issued | 2020-06 | - |
dc.identifier.issn | 0893-6080 | - |
dc.identifier.uri | http://hdl.handle.net/2433/259350 | - |
dc.description.abstract | This paper presents two approaches to extracting rules from a trained neural network consisting of linear threshold functions. The first one leads to an algorithm that extracts rules in the form of Boolean functions. Compared with an existing one, this algorithm outputs much more concise rules if the threshold functions correspond to 1-decision lists, majority functions, or certain combinations of these. The second one extracts probabilistic rules representing relations between some of the input variables and the output using a dynamic programming algorithm. The algorithm runs in pseudo-polynomial time if each hidden layer has a constant number of neurons. We demonstrate the effectiveness of these two approaches by computational experiments. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.rights | The full-text file will be made open to the public on 1 June 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving' | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.subject | Neural networks | en |
dc.subject | Boolean functions | en |
dc.subject | Rule extraction | en |
dc.subject | Dynamic programming | en |
dc.title | Extracting boolean and probabilistic rules from trained neural networks | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Neural Networks | en |
dc.identifier.volume | 126 | - |
dc.identifier.spage | 300 | - |
dc.identifier.epage | 311 | - |
dc.relation.doi | 10.1016/j.neunet.2020.03.024 | - |
dc.textversion | author | - |
dc.address | Bioinformatics Center, Institute for Chemical Research, Kyoto University | en |
dc.address | Department of Computer Science, Ben-Gurion University of the Negev | en |
dc.address | Bioinformatics Center, Institute for Chemical Research, Kyoto University | en |
dc.identifier.pmid | 32278262 | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2022-06-01 | - |
datacite.awardNumber | 18H04113 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。