このアイテムのアクセス数: 236

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.neunet.2020.03.024.pdf501.59 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorLiu, Pengyuen
dc.contributor.authorMelkman, Avraham A.en
dc.contributor.authorAkutsu, Tatsuyaen
dc.contributor.alternative劉, 鵬宇ja
dc.contributor.alternative阿久津, 達也ja
dc.date.accessioned2020-12-03T06:14:56Z-
dc.date.available2020-12-03T06:14:56Z-
dc.date.issued2020-06-
dc.identifier.issn0893-6080-
dc.identifier.urihttp://hdl.handle.net/2433/259350-
dc.description.abstractThis paper presents two approaches to extracting rules from a trained neural network consisting of linear threshold functions. The first one leads to an algorithm that extracts rules in the form of Boolean functions. Compared with an existing one, this algorithm outputs much more concise rules if the threshold functions correspond to 1-decision lists, majority functions, or certain combinations of these. The second one extracts probabilistic rules representing relations between some of the input variables and the output using a dynamic programming algorithm. The algorithm runs in pseudo-polynomial time if each hidden layer has a constant number of neurons. We demonstrate the effectiveness of these two approaches by computational experiments.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.rightsThe full-text file will be made open to the public on 1 June 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.rightsThis is not the published version. Please cite only the published version.en
dc.subjectNeural networksen
dc.subjectBoolean functionsen
dc.subjectRule extractionen
dc.subjectDynamic programmingen
dc.titleExtracting boolean and probabilistic rules from trained neural networksen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNeural Networksen
dc.identifier.volume126-
dc.identifier.spage300-
dc.identifier.epage311-
dc.relation.doi10.1016/j.neunet.2020.03.024-
dc.textversionauthor-
dc.addressBioinformatics Center, Institute for Chemical Research, Kyoto Universityen
dc.addressDepartment of Computer Science, Ben-Gurion University of the Negeven
dc.addressBioinformatics Center, Institute for Chemical Research, Kyoto Universityen
dc.identifier.pmid32278262-
dcterms.accessRightsopen access-
datacite.date.available2022-06-01-
datacite.awardNumber18H04113-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。