このアイテムのアクセス数: 265

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
978-3-030-58555-6_26.pdf5.85 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTokunaga, Hirokien
dc.contributor.authorIwana, Brian Kenjien
dc.contributor.authorTeramoto, Yukien
dc.contributor.authorYoshizawa, Akihikoen
dc.contributor.authorBise, Ryomaen
dc.contributor.alternative吉澤, 明彦ja
dc.date.accessioned2020-12-28T02:08:14Z-
dc.date.available2020-12-28T02:08:14Z-
dc.date.issued2020-
dc.identifier.isbn9783030585549-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/2433/260571-
dc.description16th European Conference, Glasgow, UK, August 23–28, 2020. Part of the Lecture Notes in Computer Science book series (LNCS, volume 12360). Also part of the Image Processing, Computer Vision, Pattern Recognition, and Graphics book sub series (LNIP, volume 12360).en
dc.description.abstractIn pathological diagnosis, since the proportion of the adenocarcinoma subtypes is related to the recurrence rate and the survival time after surgery, the proportion of cancer subtypes for pathological images has been recorded as diagnostic information in some hospitals. In this paper, we propose a subtype segmentation method that uses such proportional labels as weakly supervised labels. If the estimated class rate is higher than that of the annotated class rate, we generate negative pseudo labels, which indicate, “input image does not belong to this negative label, ” in addition to standard pseudo labels. It can force out the low confidence samples and mitigate the problem of positive pseudo label learning which cannot label low confident unlabeled samples. Our method outperformed the state-of-the-art semi-supervised learning (SSL) methods.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Computer Vision – ECCV 2020. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-58555-6_26.en
dc.rightsThe full-text file will be made open to the public on 16 November 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.subjectPathological imageen
dc.subjectSemantic segmentationen
dc.subjectNegative learningen
dc.subjectSemi-supervised learningen
dc.subjectLearning from label proportionen
dc.titleNegative Pseudo Labeling Using Class Proportion for Semantic Segmentation in Pathologyen
dc.typeconference paper-
dc.type.niitypeConference Paper-
dc.identifier.jtitleComputer Vision – ECCV 2020en
dc.identifier.volume12360-
dc.identifier.spage430-
dc.identifier.epage446-
dc.relation.doi10.1007/978-3-030-58555-6_26-
dc.textversionauthor-
dc.addressKyushu Universityen
dc.addressKyushu Universityen
dc.addressKyoto University Hospitalen
dc.addressKyoto University Hospitalen
dc.addressKyushu University・Research Center for Medical Bigdata, National Institute of Informatics, Tokyoen
dcterms.accessRightsopen access-
datacite.awardNumber20H04211-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。