このアイテムのアクセス数: 115

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
a63b0p06.pdf4.19 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author原, 将太ja
dc.contributor.author深畑, 幸俊ja
dc.contributor.author飯尾, 能久ja
dc.contributor.alternativeHARA, Shotaen
dc.contributor.alternativeFUKAHATA, Yukitoshi /IIO, Yoshihisaen
dc.contributor.transcriptionハラ, ショウタja-Kana
dc.contributor.transcriptionフカハタ, ユキトシja-Kana
dc.contributor.transcriptionイイオ, ヨシヒサja-Kana
dc.date.accessioned2021-01-07T23:54:42Z-
dc.date.available2021-01-07T23:54:42Z-
dc.date.issued2020-12-
dc.identifier.issn0386-412X-
dc.identifier.urihttp://hdl.handle.net/2433/260810-
dc.description.abstractP-wave arrival time and first-motion polarity are fundamental observations in seismology, which are used to determine hypocenter locations and focal mechanisms of earthquakes. In this study, we develop three convolutional neural network (CNN) models that perform P-wave event detection (E-Taro), phase picking (P-Jiro), and first-motion polarity determination (F-Saburo). In training and testing the CNN models, we use about 130 thousand 250 Hz and about 40 thousand 100 Hz waveform data observed in western Japan. For the 250 Hz (100 Hz) waveform data, E-Taro has the accuracy of 98.1% (97.3%); the difference between the arrival times determined by human experts and PJiro is -0.005 s (-0.012 s) in average with a standard deviation of 0.038 s (0.077 s); F-Saburo has the accuracy of 97.9% (95.4%). Finally, by applying the three CNN models to continuous waveform data, we showed the arrival time and first-motion polarity can be obtained without helps of human experts. The results of the CNN models are in good agreement with human experts.en
dc.format.mimetypeapplication/pdf-
dc.language.isojpn-
dc.publisher京都大学防災研究所ja
dc.publisher.alternativeDisaster Prevention Research Institute, Kyoto Universityen
dc.subject機械学習ja
dc.subject畳み込みニューラルネットワークja
dc.subjectP波自動検出ja
dc.subject初動極性ja
dc.subjectGrad-CAMja
dc.subjectmachine learningen
dc.subjectconvolutional neural networken
dc.subjectautomatic P-wave detectionen
dc.subjectfirst-motion polarityen
dc.subject.ndc519.9-
dc.title深層学習によるP波検出・到達時刻決定・初動極性決定ja
dc.title.alternativeAutomatic P-wave Detection, Phase Picking, and Polarity Determination based on Deep Learningen
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00027784-
dc.identifier.jtitle京都大学防災研究所年報. Bja
dc.identifier.volume63-
dc.identifier.issueB-
dc.identifier.spage69-
dc.identifier.epage92-
dc.textversionpublisher-
dc.sortkey07-
dc.address京都大学大学院理学研究科ja
dc.address京都大学防災研究所ja
dc.address京都大学防災研究所ja
dc.address.alternativeGraduate School of Science, Kyoto Universityen
dc.address.alternativeDisaster Prevention Research Institute Kyoto Universityen
dc.address.alternativeDisaster Prevention Research Institute Kyoto Universityen
dc.relation.urlhttp://www.dpri.kyoto-u.ac.jp/publications/nenpo/-
dcterms.accessRightsopen access-
dc.identifier.pissn0386-412X-
dc.identifier.jtitle-alternativeDisaster Prevention Research Institute Annuals. Ben
出現コレクション:Vol.63 B

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。