このアイテムのアクセス数: 210

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41598-020-80113-7.pdf1.66 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSakai, Miyukien
dc.contributor.authorNagayasu, Kazukien
dc.contributor.authorShibui, Norihiroen
dc.contributor.authorAndoh, Chihiroen
dc.contributor.authorTakayama, Kaitoen
dc.contributor.authorShirakawa, Hisashien
dc.contributor.authorKaneko, Shujien
dc.contributor.alternative酒井, 幸ja
dc.contributor.alternative永安, 一樹ja
dc.contributor.alternative澁井, 紀宏ja
dc.contributor.alternative安藤, 千紘ja
dc.contributor.alternative高山, 海都ja
dc.contributor.alternative白川, 久志ja
dc.contributor.alternative金子, 周司ja
dc.date.accessioned2021-01-13T04:02:58Z-
dc.date.available2021-01-13T04:02:58Z-
dc.date.issued2021-01-12-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2433/260969-
dc.description化合物の薬理作用を予測する技術を開発 --薬理作用ビッグデータを用いて--. 京都大学プレスリリース. 2021-01-13.ja
dc.description.abstractMany therapeutic drugs are compounds that can be represented by simple chemical structures, which contain important determinants of affinity at the site of action. Recently, graph convolutional neural network (GCN) models have exhibited excellent results in classifying the activity of such compounds. For models that make quantitative predictions of activity, more complex information has been utilized, such as the three-dimensional structures of compounds and the amino acid sequences of their respective target proteins. As another approach, we hypothesized that if sufficient experimental data were available and there were enough nodes in hidden layers, a simple compound representation would quantitatively predict activity with satisfactory accuracy. In this study, we report that GCN models constructed solely from the two-dimensional structural information of compounds demonstrated a high degree of activity predictability against 127 diverse targets from the ChEMBL database. Using the information entropy as a metric, we also show that the structural diversity had less effect on the prediction performance. Finally, we report that virtual screening using the constructed model identified a new serotonin transporter inhibitor with activity comparable to that of a marketed drug in vitro and exhibited antidepressant effects in behavioural studies.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en
dc.subjectData miningen
dc.subjectDrug safetyen
dc.subjectDrug screeningen
dc.subjectHigh-throughput screeningen
dc.subjectMachine learningen
dc.subjectNeuroscienceen
dc.subjectPharmaceuticsen
dc.subjectPharmacologyen
dc.subjectToxicologyen
dc.subjectTransporters in the nervous systemen
dc.subjectVirtual drug screeningen
dc.titlePrediction of pharmacological activities from chemical structures with graph convolutional neural networksen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScientific Reportsen
dc.identifier.volume11-
dc.relation.doi10.1038/s41598-020-80113-7-
dc.textversionpublisher-
dc.identifier.artnum525-
dc.identifier.pmid33436854-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2021-01-13-
dcterms.accessRightsopen access-
datacite.awardNumber20H04774-
datacite.awardNumber20K07064-
datacite.awardNumber18H04616-
datacite.awardNumber20H00491-
dc.identifier.eissn2045-2322-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。