このアイテムのアクセス数: 251

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2159-07.pdf6.29 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author鷲野, 朋広-
dc.contributor.author高橋, 正-
dc.contributor.alternativeWashino, Tomohiro-
dc.contributor.alternativeTakahashi, Tadashi-
dc.contributor.transcriptionワシノ, トモヒロ-
dc.contributor.transcriptionタカハシ, タダシ-
dc.date.accessioned2021-02-09T04:46:17Z-
dc.date.available2021-02-09T04:46:17Z-
dc.date.issued2020-06-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/261346-
dc.description.abstract第1に, フィッシャーのアイリスデータに対してニューラルネットワークを作成し, 2種類(setosa, versicolor)を学習させる.次に, 学習済みのニューラルネットワークにおいて3種類(setosa, versicolor, virginica)を訓練データ, 1種類(virginica)をテストデータとして学習させる.このときテストデータの影響を過剰に受けてしまう状態について分類表を作成する.第2に, 学習モデル(中間ユニット数が1000である3層パーセプトロン)を作成し, 真の分布に従う訓練データを学習させる.このときニューラルネットワークの出力が訓練データを過剰に近似して過学習が起きる.この状態について訓練データとテストデータに対する損失を比較して調べる.また, 訓練データとテストデータに対して, 学習後のニューラルネットの出力をグラフで表す.次に, 学習モデル(中間ユニット数が2である3層パーセプトロン)を作成し, 訓練データを学習させる.このときニューラルネットワークの出力が訓練データを過剰に近似せず過学習が起こらない.この状態について学習の過程で変化するRMS重みをグラフで表す.最後に学習後の重みの収束値が真の分布を実現する学習モデルのパラメータ集合を満たすことを確かめる.-
dc.format.mimetypeapplication/pdf-
dc.language.isojpn-
dc.publisher京都大学数理解析研究所-
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto University-
dc.subject.ndc410-
dc.titleニューラルネットワークにおける過学習に関する分析ja
dc.title.alternativeOn the Over-fitting in the Neural Network (Computer Algebra - Theory and its Applications)-
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2159-
dc.identifier.spage64-
dc.identifier.epage74-
dc.textversionpublisher-
dc.sortkey07-
dc.address甲南大学大学院自然科学研究科知能情報学専攻-
dc.address甲南大学知能情報学部知能情報学科-
dc.address.alternativeGRADUATE SCHOOL OF NATURAL SCIENCE, KONAN UNIVERSITY-
dc.address.alternativeDEPARTMENT OF INTELLIGENCE AND INFORMATICS, KONAN UNIVERSITY-
dcterms.accessRightsopen access-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2159 Computer Algebra - Theory and its Applications

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。