このアイテムのアクセス数: 78
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2161-09.pdf | 1.43 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kim, Dongsu | - |
dc.date.accessioned | 2021-02-09T04:46:27Z | - |
dc.date.available | 2021-02-09T04:46:27Z | - |
dc.date.issued | 2020-06 | - |
dc.identifier.issn | 1880-2818 | - |
dc.identifier.uri | http://hdl.handle.net/2433/261395 | - |
dc.description.abstract | For any integer k ≥ 2, we prove combinatorially the following Euler (binomial) transformation identity NC(k)(t)n₊1=tΣn(n i), i=0NW(k)(t)i where NC(k)(t)m(resp. NW(k)(t)m) is the enumerative polynomial on part1t1ons of {1, ... , m } avoiding k-crossings (resp. enhanced k-crossings) by number of blocks. The special k = 2 and t = 1 case, asserting the Euler transformation of Motzkin numbers are Catalan numbers, was discovered by Donaghey 1977. The result for k = 3 and t = 1, arising naturally in a recent study of pattern avoidance in ascent sequences and inversion sequences, was proved only analytically. It is based on the preprint (arXiv:1905.10526) with Zhicong Lin. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | - |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | - |
dc.subject.ndc | 410 | - |
dc.title | A combinatorial bijection on $k$-noncrossing partitions (Representation Theory and its Combinatorial Aspects) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2161 | - |
dc.identifier.spage | 96 | - |
dc.identifier.epage | 106 | - |
dc.textversion | publisher | - |
dc.sortkey | 09 | - |
dc.address | Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology | - |
dcterms.accessRights | open access | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
出現コレクション: | 2161 表現論とその組合せ論的側面 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。