このアイテムのアクセス数: 64

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2162-24.pdf5.32 MBAdobe PDF見る/開く
タイトル: The method of creative microscoping (Analytic Number Theory and Related Topics)
著者: Zudilin, Wadim
発行日: Jul-2020
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2162
開始ページ: 227
終了ページ: 234
抄録: Ramanujan's formulae for l/π and their generalisations remain an amazing topic, with many mathematical challenges. Recently it was observed that the formulae possess spectacular 'supercongruence' counterparts. For example, truncating the sum in Ramanujan's formula Σ∞k=0(4k2k)(2kk)2/28k32k(8k + 1)= 2√3 /π to the first p terms correspond to the congruenceΣp-1k=0(4k2k)(2kk)2/28k32k (8k+ 1)三p(-3/p)(modp3) valid for any prime p > 3. Some supercongruences were shown to be true through a tricky use of classical hypergeometric identities or the Wilf-Zeilberger method of creative telescoping. The particular example displayed above (and many other entries) were resistant to such techniques. In joint work with Victor Guo we develop a new method of 'creative microscoping' that provides conseptual reasons for and simultaneous proofs of both the underlying Ramanujan's formula and its finite supercongruence counterparts. The main ingredient is an asymptotic analysis of suitable q-deformations of Ramanujan's formulas at all roots of unity. Here we outline the method on the concrete example of supercongruence above.
URI: http://hdl.handle.net/2433/261432
出現コレクション:2162 解析的整数論とその周辺

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。