このアイテムのアクセス数: 108
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
RIMS1928.pdf | 750.43 kB | Adobe PDF | 見る/開く |
タイトル: | Potential Well Theory for the Derivative Nonlinear Schrödinger Equation |
著者: | HAYASHI, Masayuki |
著者名の別形: | 林, 雅行 |
キーワード: | 35Q55 35Q51 37K05 35A15 derivative nonlinear Schrödinger equation solitons potential well variational methods |
発行日: | Oct-2020 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
開始ページ: | 1 |
終了ページ: | 35 |
論文番号: | RIMS-1928 |
抄録: | We consider the following nonlinear Schrödinger equation of derivative type: (1) i∂tu + ∂2xu + i|u|2∂xu + b|u|4u = 0, (t, x) ∈ R×R, b ∈ R. If b = 0, this equation is known as a standard derivative nonlinear Schrödinger equation (DNLS), which is mass critical and completely integrable. The equation (1) can be considered as a generalized equation of DNLS while preserving mass criticality and Hamiltonian structure. For DNLS it is known that if the initial data u0∈H1(R) satisfies the mass condition ||u0||2L2 < 4π, the corresponding solution is global and bounded. In this paper we first establish the mass condition on (1) for general b∈R, which is exactly corresponding to 4π-mass condition for DNLS, and then characterize it from the viewpoint of potential well theory. We see that the mass threshold value gives the turning point in the structure of potential well generated by solitons. In particular, our results for DNLS give a characterization of both 4π-mass condition and algebraic solitons. |
URI: | http://hdl.handle.net/2433/261826 |
関連リンク: | http://www.kurims.kyoto-u.ac.jp/preprint/index.html |
出現コレクション: | 数理解析研究所プレプリント |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。