このアイテムのアクセス数: 207
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
RIMS1933.pdf | 340.08 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | MOCHIZUKI, Shinichi | en |
dc.contributor.author | FESENKO, Ivan | en |
dc.contributor.author | HOSHI, Yuichiro | en |
dc.contributor.author | MINAMIDE, Arata | en |
dc.contributor.author | POROWSKI, Wojciech | en |
dc.contributor.alternative | 望月, 新一 | ja |
dc.contributor.alternative | 星, 裕一郎 | ja |
dc.contributor.alternative | 南出, 新 | ja |
dc.contributor.transcription | モチヅキ, シンイチ | ja-Kana |
dc.contributor.transcription | ホシ, ユウイチロウ | ja-Kana |
dc.contributor.transcription | ミナミデ, アラタ | ja-Kana |
dc.date.accessioned | 2021-03-03T08:29:30Z | - |
dc.date.available | 2021-03-03T08:29:30Z | - |
dc.date.issued | 2020-11 | - |
dc.identifier.uri | http://hdl.handle.net/2433/261831 | - |
dc.description.abstract | In the final paper of a series of papers concerning inter- universal Teichmüller theory, Mochizuki verified various numerically non-effective versions of the Vojta, ABC, and Szpiro Conjectures over number fields. In the present paper, we obtain various numerically effective versions of Mochizuki's results. In order to obtain these results, we first establish a version of the theory of étale theta functions that functions properly at arbitrary bad places, i.e., even bad places that divide the prime "2". We then proceed to discuss how such a modified version of the theory of étale theta functions affects inter-universal Teichmüller theory. Finally, by applying our slightly modifed version of inter-universal Teichmüller theory, together with various explicit estimates concerning heights, the j-invariants of "arithmetic" elliptic curves, and the prime number theorem, we verify the numerically effective versions of Mochizuki's results referred to above. These numerically effective versions imply effective diophantine results such as an effective version of the ABC inequality over mono-complex number fields [i.e., the rational number field or an imaginary quadratic field] and an effective version of a conjecture of Szpiro. We also obtain an explicit estimate concerning "Fermat's Last Theorem" (FLT) - i.e., to the effect that FLT holds for prime exponents > 1.615・1014 - which is sufficient to give an alternative proof of the first case of Fermat's Last Theorem. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.publisher.alternative | 京都大学数理解析研究所 | ja |
dc.subject | 14H25 | en |
dc.subject | 14H30 | en |
dc.subject.ndc | 410 | - |
dc.title | Explicit Estimates in Inter-universal Teichmüller Theory | en |
dc.type | other | - |
dc.type.niitype | Preprint | - |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 55 | - |
dc.textversion | author | - |
dc.identifier.artnum | RIMS-1933 | - |
dc.sortkey | 1933 | - |
dc.address | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.address | School of Mathematics, University of Nottingham | en |
dc.address | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.address | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.address | School of Mathematics, University of Nottingham | en |
dc.relation.url | http://www.kurims.kyoto-u.ac.jp/preprint/index.html | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 18K03239 | - |
datacite.awardNumber | 20K14285 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | 数理解析研究所プレプリント |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。