このアイテムのアクセス数: 207

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
RIMS1933.pdf340.08 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorMOCHIZUKI, Shinichien
dc.contributor.authorFESENKO, Ivanen
dc.contributor.authorHOSHI, Yuichiroen
dc.contributor.authorMINAMIDE, Arataen
dc.contributor.authorPOROWSKI, Wojciechen
dc.contributor.alternative望月, 新一ja
dc.contributor.alternative星, 裕一郎ja
dc.contributor.alternative南出, 新ja
dc.contributor.transcriptionモチヅキ, シンイチja-Kana
dc.contributor.transcriptionホシ, ユウイチロウja-Kana
dc.contributor.transcriptionミナミデ, アラタja-Kana
dc.date.accessioned2021-03-03T08:29:30Z-
dc.date.available2021-03-03T08:29:30Z-
dc.date.issued2020-11-
dc.identifier.urihttp://hdl.handle.net/2433/261831-
dc.description.abstractIn the final paper of a series of papers concerning inter- universal Teichmüller theory, Mochizuki verified various numerically non-effective versions of the Vojta, ABC, and Szpiro Conjectures over number fields. In the present paper, we obtain various numerically effective versions of Mochizuki's results. In order to obtain these results, we first establish a version of the theory of étale theta functions that functions properly at arbitrary bad places, i.e., even bad places that divide the prime "2". We then proceed to discuss how such a modified version of the theory of étale theta functions affects inter-universal Teichmüller theory. Finally, by applying our slightly modifed version of inter-universal Teichmüller theory, together with various explicit estimates concerning heights, the j-invariants of "arithmetic" elliptic curves, and the prime number theorem, we verify the numerically effective versions of Mochizuki's results referred to above. These numerically effective versions imply effective diophantine results such as an effective version of the ABC inequality over mono-complex number fields [i.e., the rational number field or an imaginary quadratic field] and an effective version of a conjecture of Szpiro. We also obtain an explicit estimate concerning "Fermat's Last Theorem" (FLT) - i.e., to the effect that FLT holds for prime exponents > 1.615・1014 - which is sufficient to give an alternative proof of the first case of Fermat's Last Theorem.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.subject14H25en
dc.subject14H30en
dc.subject.ndc410-
dc.titleExplicit Estimates in Inter-universal Teichmüller Theoryen
dc.typeother-
dc.type.niitypePreprint-
dc.identifier.spage1-
dc.identifier.epage55-
dc.textversionauthor-
dc.identifier.artnumRIMS-1933-
dc.sortkey1933-
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.addressSchool of Mathematics, University of Nottinghamen
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.addressSchool of Mathematics, University of Nottinghamen
dc.relation.urlhttp://www.kurims.kyoto-u.ac.jp/preprint/index.html-
dcterms.accessRightsopen access-
datacite.awardNumber18K03239-
datacite.awardNumber20K14285-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:数理解析研究所プレプリント

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。