このアイテムのアクセス数: 155

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
RIMS1935.pdf483.52 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHOSHI, Yuichiroen
dc.contributor.authorMOCHIZUKI, Shinichien
dc.contributor.authorTSUJIMURA, Shotaen
dc.contributor.alternative星, 裕一郎ja
dc.contributor.alternative望月, 新一ja
dc.contributor.alternative辻村, 昇太ja
dc.contributor.transcriptionホシ, ユウイチロウja-Kana
dc.contributor.transcriptionモチヅキ, シンイチja-Kana
dc.contributor.transcriptionツジムラ, ショウタja-Kana
dc.date.accessioned2021-03-03T08:29:30Z-
dc.date.available2021-03-03T08:29:30Z-
dc.date.issued2020-12-
dc.identifier.urihttp://hdl.handle.net/2433/261833-
dc.description.abstractIn this paper, we give a purely combinatorial/group-theoretic construction of the conjugacy class of subgroups of the Grothendieck-Teichmüller group GT determined by the absolute Galois group GQ def = Gal(Q/Q) [where Q denotes the field of algebraic numbers] of the field of rational numbers Q. In fact, this construction also yields, as a by-product, a purely combinatorial/group-theoretic characterization of the GT-conjugates of closed subgroups of GQ that are "sufficiently large" in a certain sense. We then introduce the notions of TKND-fields [i.e., "torally Kummernondegenerate fields"] and AVKF-fields [i.e., "abelian variety Kummerfaithful fields"], which generalize, respectively, the notions of "torally Kummer-faithful fields" and "Kummer-faithful fields" [notions that appear in previous work of Mochizuki]. For instance, if we write Qab⊆ Q for the maximal abelian extension field of Q, then every finite extension of Qab is a TKND-AVKF-field [i.e., both TKND and AVKF]. We then apply the purely combinatorial/group-theoretic characterization referred to above to prove that, if a subfield K ⊆ Q is TKND-AVKF, then the commensurator in GT of the subgroup GK⊆ GQ determined by K is contained in GQ. Finally, we combine this computation of the commensurator with a result of Hoshi-Minamide-Mochizuki concerning GT to prove a semi-absolute version of the Grothendieck Conjecture for higher dimensional [i.e., of dimension ≥ 2] configuration spaces associated to hyperbolic curves of genus zero over TKND-AVKF-fields.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.subject14H30en
dc.subject14H25en
dc.subjectanabelian geometryen
dc.subjectétale fundamental groupen
dc.subjectGrothendieckTeichmüller groupen
dc.subjecthyperbolic curveen
dc.subjectconfiguration spaceen
dc.subjectcombinatorial Belyi cuspidalizationen
dc.subjectGrothendieck Conjectureen
dc.subject.ndc410-
dc.titleCombinatorial Construction of the Absolute Galois Group of the Field of Rational Numbersen
dc.typeother-
dc.type.niitypePreprint-
dc.identifier.spage1-
dc.identifier.epage97-
dc.textversionauthor-
dc.identifier.artnumRIMS-1935-
dc.sortkey1935-
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.relation.urlhttp://www.kurims.kyoto-u.ac.jp/preprint/index.html-
dcterms.accessRightsopen access-
datacite.awardNumber18K03239-
datacite.awardNumber18J10260-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:数理解析研究所プレプリント

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。