このアイテムのアクセス数: 158
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
journal.pcbi.1008846.pdf | 2.96 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kajiwara, Motoki | en |
dc.contributor.author | Nomura, Ritsuki | en |
dc.contributor.author | Goetze, Felix | en |
dc.contributor.author | Kawabata, Masanori | en |
dc.contributor.author | Isomura, Yoshikazu | en |
dc.contributor.author | Akutsu, Tatsuya | en |
dc.contributor.author | Shimono, Masanori | en |
dc.contributor.alternative | 梶原, 基 | ja |
dc.contributor.alternative | 野村, 凛月 | ja |
dc.contributor.alternative | 川端, 政則 | ja |
dc.contributor.alternative | 礒村, 宜和 | ja |
dc.contributor.alternative | 阿久津, 達也 | ja |
dc.contributor.alternative | 下野, 昌宣 | ja |
dc.date.accessioned | 2021-04-22T09:26:10Z | - |
dc.date.available | 2021-04-22T09:26:10Z | - |
dc.date.issued | 2021-04 | - |
dc.identifier.uri | http://hdl.handle.net/2433/262588 | - |
dc.description | 脳が安定して活動を続けられるメカニズムの一端を解明 --新皮質で、抑制性細胞は他細胞を制御しやすいトポロジカルな位置取りをする--. 京都大学プレスリリース. 2021-04-09. | ja |
dc.description.abstract | The brain is a network system in which excitatory and inhibitory neurons keep activity balanced in the highly non-random connectivity pattern of the microconnectome. It is well known that the relative percentage of inhibitory neurons is much smaller than excitatory neurons in the cortex. So, in general, how inhibitory neurons can keep the balance with the surrounding excitatory neurons is an important question. There is much accumulated knowledge about this fundamental question. This study quantitatively evaluated the relatively higher functional contribution of inhibitory neurons in terms of not only properties of individual neurons, such as firing rate, but also in terms of topological mechanisms and controlling ability on other excitatory neurons. We combined simultaneous electrical recording (~2.5 hours) of ~1000 neurons in vitro, and quantitative evaluation of neuronal interactions including excitatory-inhibitory categorization. This study accurately defined recording brain anatomical targets, such as brain regions and cortical layers, by inter-referring MRI and immunostaining recordings. The interaction networks enabled us to quantify topological influence of individual neurons, in terms of controlling ability to other neurons. Especially, the result indicated that highly influential inhibitory neurons show higher controlling ability of other neurons than excitatory neurons, and are relatively often distributed in deeper layers of the cortex. Furthermore, the neurons having high controlling ability are more effectively limited in number than central nodes of k-cores, and these neurons also participate in more clustered motifs. In summary, this study suggested that the high controlling ability of inhibitory neurons is a key mechanism to keep balance with a large number of other excitatory neurons beyond simple higher firing rate. Application of the selection method of limited important neurons would be also applicable for the ability to effectively and selectively stimulate E/I imbalanced disease states. | en |
dc.language.iso | eng | - |
dc.publisher | Public Library of Science (PLoS) | en |
dc.rights | © 2021 Kajiwara et al. | en |
dc.rights | This is an open access article distributed under the terms of the Creative Commons Attribution License (Creative Commons Attribution 4.0 International Public License), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.title | Inhibitory neurons exhibit high controlling ability in the cortical microconnectome | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | PLOS Computational Biology | en |
dc.identifier.volume | 17 | - |
dc.identifier.issue | 4 | - |
dc.relation.doi | 10.1371/journal.pcbi.1008846 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | e1008846 | - |
dc.address | Graduate Schools of Medicine, Kyoto University | en |
dc.address | Graduate Schools of Medicine, Kyoto University | en |
dc.address | Department of Physics and Center for Complex Systems, National Central University; Molecular Science and Technology Program, Taiwan International Graduate Program, National Central University and Academia Sinica | en |
dc.address | Department of Physiology and Cell Biology, Tokyo Medical and Dental University | en |
dc.address | Department of Physiology and Cell Biology, Tokyo Medical and Dental University | en |
dc.address | Bioinformatics Center, Institute for Chemical Research, Kyoto University | en |
dc.address | Graduate Schools of Medicine, Kyoto University; Hakubi center, Kyoto University | en |
dc.identifier.pmid | 33831009 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2021-04-09 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17K19456 | - |
datacite.awardNumber | 19H05215 | - |
datacite.awardNumber | 20H04257 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-17K19456/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PUBLICLY-19H05215/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-20H04257/ | - |
dc.identifier.pissn | 1553-7358 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | マルチスケールコネクトームの展開 | ja |
jpcoar.awardTitle | マイクロコネクトームのマクロ解剖との連結と精神疾患マウス脳への応用 | ja |
jpcoar.awardTitle | ミクロ神経細胞ネットワークの広域非一様性の原理解明 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス