このアイテムのアクセス数: 157

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41467-021-23319-1.pdf24.85 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNakamura, Kazukien
dc.contributor.authorKojima, Ryosukeen
dc.contributor.authorUchino, Eiichiroen
dc.contributor.authorOno, Kohen
dc.contributor.authorYanagita, Motokoen
dc.contributor.authorMurashita, Koichien
dc.contributor.authorItoh, Kenen
dc.contributor.authorNakaji, Shigeyukien
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative中村, 和貴ja
dc.contributor.alternative小島, 諒介ja
dc.contributor.alternative内野, 詠一郎ja
dc.contributor.alternative尾野, 亘ja
dc.contributor.alternative柳田, 素子ja
dc.contributor.alternative村下, 公一ja
dc.contributor.alternative伊東, 健ja
dc.contributor.alternative中路, 重之ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2021-06-01T07:41:53Z-
dc.date.available2021-06-01T07:41:53Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2433/263138-
dc.description効果的な健康改善プランを提案するAIを開発 --個別化医療における健康介入への活用に期待--. 京都大学プレスリリース. 2021-05-28.ja
dc.description.abstractClinical decision-making regarding treatments based on personal characteristics leads to effective health improvements. Machine learning (ML) has been the primary concern of diagnosis support according to comprehensive patient information. A prominent issue is the development of objective treatment processes in clinical situations. This study proposes a framework to plan treatment processes in a data-driven manner. A key point of the framework is the evaluation of the actionability for personal health improvements by using a surrogate Bayesian model in addition to a high-performance nonlinear ML model. We first evaluate the framework from the viewpoint of its methodology using a synthetic dataset. Subsequently, the framework is applied to an actual health checkup dataset comprising data from 3132 participants, to lower systolic blood pressure and risk of chronic kidney disease at the individual level. We confirm that the computed treatment processes are actionable and consistent with clinical knowledge for improving these values. We also show that the improvement processes presented by the framework can be clinically informative. These results demonstrate that our framework can contribute toward decision-making in the medical field, providing clinicians with deeper insights.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2021en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectComputer scienceen
dc.subjectMachine learningen
dc.subjectPreventive medicineen
dc.titleHealth improvement framework for actionable treatment planning using a surrogate Bayesian modelen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNature Communicationsen
dc.identifier.volume12-
dc.relation.doi10.1038/s41467-021-23319-1-
dc.textversionpublisher-
dc.identifier.artnum3088-
dc.addressResearch and Business Development Department, Kyowa Hakko Bio Co., Ltd.; Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Nephrology, Graduate School of Medicine, Kyoto University; Institute for the Advanced Study of Human Biology, Kyoto Universityen
dc.addressCenter of Innovation Research Initiatives Organization, Hirosaki Universityen
dc.addressDepartment of Stress Response Science, Hirosaki University Graduate School of Medicineen
dc.addressDepartment of Social Health, Hirosaki University Graduate School of Medicineen
dc.addressDepartment of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto Universityen
dc.identifier.pmid34035243-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2021-05-28-1-
dcterms.accessRightsopen access-
dc.identifier.pissn2041-1723-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons