このアイテムのアクセス数: 108
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
TAC.2018.2842145.pdf | 1.65 MB | Adobe PDF | 見る/開く |
タイトル: | Stable Process Approach to Analysis of Systems Under Heavy-Tailed Noise: Modeling and Stochastic Linearization |
著者: | Kashima, Kenji ![]() ![]() ![]() Aoyama, Hiroki Ohta, Yoshito ![]() ![]() |
著者名の別形: | 加嶋, 健司 太田, 快人 |
キーワード: | Extremal events linearization renewable energy stochastic systems |
発行日: | Apr-2019 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | IEEE Transactions on Automatic Control |
巻: | 64 |
号: | 4 |
開始ページ: | 1344 |
終了ページ: | 1357 |
抄録: | The Wiener process has provided a lot of practically useful mathematical tools to model stochastic noise in many applications. However, this framework is not enough for modeling extremal events, since many statistical properties of dynamical systems driven by the Wiener process are inevitably Gaussian. The goal of this work is to develop a framework that can represent a heavy-tailed distribution without losing the advantages of the Wiener process. To this end, we investigate models based on stable processes (this term “stable” has nothing to do with “dynamical stability”) and clarify their fundamental properties. In addition, we propose a method for stochastic linearization, which enables us to approximately linearize static nonlinearities in feedback systems under heavy-tailed noise, and analyze the resulting error theoretically. The proposed method is applied to assessing wind power fluctuation to show the practical usefulness. |
著作権等: | This is an open access article. |
URI: | http://hdl.handle.net/2433/263835 |
DOI(出版社版): | 10.1109/TAC.2018.2842145 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。