このアイテムのアクセス数: 108

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
TAC.2018.2842145.pdf1.65 MBAdobe PDF見る/開く
タイトル: Stable Process Approach to Analysis of Systems Under Heavy-Tailed Noise: Modeling and Stochastic Linearization
著者: Kashima, Kenji  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2963-2584 (unconfirmed)
Aoyama, Hiroki
Ohta, Yoshito  KAKEN_id  orcid https://orcid.org/0000-0003-0025-7482 (unconfirmed)
著者名の別形: 加嶋, 健司
太田, 快人
キーワード: Extremal events
linearization
renewable
energy
stochastic systems
発行日: Apr-2019
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Transactions on Automatic Control
巻: 64
号: 4
開始ページ: 1344
終了ページ: 1357
抄録: The Wiener process has provided a lot of practically useful mathematical tools to model stochastic noise in many applications. However, this framework is not enough for modeling extremal events, since many statistical properties of dynamical systems driven by the Wiener process are inevitably Gaussian. The goal of this work is to develop a framework that can represent a heavy-tailed distribution without losing the advantages of the Wiener process. To this end, we investigate models based on stable processes (this term “stable” has nothing to do with “dynamical stability”) and clarify their fundamental properties. In addition, we propose a method for stochastic linearization, which enables us to approximately linearize static nonlinearities in feedback systems under heavy-tailed noise, and analyze the resulting error theoretically. The proposed method is applied to assessing wind power fluctuation to show the practical usefulness.
著作権等: This is an open access article.
URI: http://hdl.handle.net/2433/263835
DOI(出版社版): 10.1109/TAC.2018.2842145
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。