ダウンロード数: 336
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
lcsys.2021.3077201.pdf | 1.01 MB | Adobe PDF | 見る/開く |
タイトル: | Structured Hammerstein-Wiener model learning for model predictive control |
著者: | Moriyasu, Ryuta Ikeda, Taro Kawaguchi, Sho Kashima, Kenji |
著者名の別形: | 森安, 竜大 池田, 太郎 川口, 翔 加嶋, 健司 |
キーワード: | Model predictive control Machine learning Convex optimization Input convex neural network |
発行日: | 2022 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | IEEE Control Systems Letters |
巻: | 6 |
開始ページ: | 397 |
終了ページ: | 402 |
抄録: | This paper aims to improve the reliability of optimal control using models constructed by machine learning methods. Optimal control problems based on such models are generally non-convex and difficult to solve online. In this paper, we propose a model that combines the Hammerstein-Wiener model with input convex neural networks, which have recently been proposed in the field of machine learning. An important feature of the proposed model is that resulting optimal control problems are effectively solvable exploiting their convexity and partial linearity while retaining flexible modeling ability. The practical usefulness of the method is examined through its application to the modeling and control of an engine airpath system. |
著作権等: | © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/264260 |
DOI(出版社版): | 10.1109/lcsys.2021.3077201 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。