ダウンロード数: 95

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
journal.pmed.1003660.pdf2.61 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIwanami, Shoyaen
dc.contributor.authorEjima, Keisukeen
dc.contributor.authorKim, Kwang Suen
dc.contributor.authorNoshita, Kojien
dc.contributor.authorFujita, Yasuhisaen
dc.contributor.authorMiyazaki, Taigaen
dc.contributor.authorKohno, Shigeruen
dc.contributor.authorMiyazaki, Yoshitsuguen
dc.contributor.authorMorimoto, Shimpeien
dc.contributor.authorNakaoka, Shinjien
dc.contributor.authorKoizumi, Yoshikien
dc.contributor.authorAsai, Yusukeen
dc.contributor.authorAihara, Kazuyukien
dc.contributor.authorWatashi, Koichien
dc.contributor.authorThompson, Robin N.en
dc.contributor.authorShibuya, Kenjien
dc.contributor.authorFujiu, Katsuhitoen
dc.contributor.authorPerelson, Alan S.en
dc.contributor.authorIwami, Shingoen
dc.contributor.authorWakita, Takajien
dc.contributor.alternative岩波, 翔也ja
dc.contributor.alternative江島, 啓介ja
dc.contributor.alternative野下, 浩司ja
dc.contributor.alternative藤田, 泰久ja
dc.contributor.alternative宮崎, 泰可ja
dc.contributor.alternative河野, 茂ja
dc.contributor.alternative宮崎, 義継ja
dc.contributor.alternative森本, 心平ja
dc.contributor.alternative中岡, 慎治ja
dc.contributor.alternative小泉, 吉輝ja
dc.contributor.alternative浅井, 雄介ja
dc.contributor.alternative合原, 一幸ja
dc.contributor.alternative渡士, 幸一ja
dc.contributor.alternative藤生, 克仁ja
dc.contributor.alternative岩見, 真吾ja
dc.contributor.alternative脇田, 隆字ja
dc.date.accessioned2021-07-09T08:04:54Z-
dc.date.available2021-07-09T08:04:54Z-
dc.date.issued2021-07-
dc.identifier.urihttp://hdl.handle.net/2433/264261-
dc.description数理モデルによる臨床試験シミュレータを開発 --感染症に対する標準治療法の早期確立に貢献--. 京都大学プレスリリース. 2021-07-07.ja
dc.descriptionSetting COVID-19 drug trials up for success. 京都大学プレスリリース. 2021-07-07.en
dc.description.abstract[Background] Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. [Methods and findings] A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d−1 (95% CI: 1.06 to 1.27 d−1), 0.777 d−1 (0.716 to 0.838 d−1), and 0.450 d−1 (0.378 to 0.522 d−1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). Subsequently, we mimicked randomized controlled trials of antivirals by simulation. An antiviral effect causing a 95% to 99% reduction in viral replication was added to the model. To be realistic, we assumed that randomization and treatment are initiated with some time lag after symptom onset. Using the duration of virus shedding as an outcome, the sample size to detect a statistically significant mean difference between the treatment and placebo groups (1:1 allocation) was 13, 603 and 11, 670 (when the antiviral effect was 95% and 99%, respectively) per group if all patients are enrolled regardless of timing of randomization. The sample size was reduced to 584 and 458 (when the antiviral effect was 95% and 99%, respectively) if only patients who are treated within 1 day of symptom onset are enrolled. We confirmed the sample size was similarly reduced when using cumulative viral load in log scale as an outcome. We used a conventional virus dynamics model, which may not fully reflect the detailed mechanisms of viral dynamics of SARS-CoV-2. The model needs to be calibrated in terms of both parameter settings and model structure, which would yield more reliable sample size calculation. [Conclusions] In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.en
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)en
dc.rightsThis is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.en
dc.rights.urihttps://creativecommons.org/publicdomain/zero/1.0/-
dc.subjectAntiviral therapyen
dc.subjectViral loaden
dc.subjectSARS CoV 2en
dc.subjectRandomized controlled trialsen
dc.subjectAntiviralsen
dc.subjectCOVID 19en
dc.subjectViral replicationen
dc.subjectClinical trialsen
dc.titleDetection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling studyen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePLOS Medicineen
dc.identifier.volume18-
dc.identifier.issue7-
dc.relation.doi10.1371/journal.pmed.1003660-
dc.textversionpublisher-
dc.identifier.artnume1003660-
dc.addressDepartment of Biology, Faculty of Sciences, Kyushu University; interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya Universityen
dc.addressDepartment of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomingtonen
dc.addressDivision of Biological Science, Graduate School of Science, Nagoya Universityen
dc.addressDepartment of Biology, Faculty of Sciences, Kyushu Universityen
dc.addressDepartment of Biology, Faculty of Sciences, Kyushu University; interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya Universityen
dc.addressDepartment of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciencesen
dc.addressNagasaki Universityen
dc.addressDepartment of Chemotherapy & Mycoses and Leprosy Research Center, National Institute of Infectious Diseasesen
dc.addressInstitute of Biomedical Sciences, Nagasaki Universityen
dc.addressFaculty of Advanced Life Science, Hokkaido Universityen
dc.addressNational Center for Global Health and Medicineen
dc.addressDisease Control and Prevention Center, National Center for Global Health and Medicineen
dc.addressInternational Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyoen
dc.addressDepartment of Virology II, National Institute of Infectious Diseases; Department of Applied Biological Science, Tokyo University of Science; Institute for Frontier Life and Medical Sciences, Kyoto Universityen
dc.addressMathematics Institute, University of Warwick; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwicken
dc.addressInstitute for Population Health, King’s College Londonen
dc.addressDepartment of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo; Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyoen
dc.addressTheoretical Biology and Biophysics Group, Los Alamos National Laboratory; New Mexico Consortiumen
dc.addressDepartment of Biology, Faculty of Sciences, Kyushu University; interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University; Institute of Mathematics for Industry, Kyushu University; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR); Science Groove Inc.en
dc.addressDepartment of Virology II, National Institute of Infectious Diseasesen
dc.identifier.pmid34228712-
dc.relation.urlhttps://ashbi.kyoto-u.ac.jp/ja/news/20210707_research-result_iwami/-
dc.relation.urlhttps://ashbi.kyoto-u.ac.jp/news/20210707_research-result_iwami/-
dcterms.accessRightsopen access-
datacite.awardNumber19J12319-
datacite.awardNumber18KT0018-
datacite.awardNumber18H01139-
datacite.awardNumber16H04845-
datacite.awardNumber17H04085-
datacite.awardNumber18K18146-
datacite.awardNumber20H05042-
datacite.awardNumber19H04839-
datacite.awardNumber18H05103-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19J12319/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-18KT0018/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-18H01139/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-16H04845/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-17H04085/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-18K18146/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PUBLICLY-20H05042/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PUBLICLY-19H04839/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PUBLICLY-18H05103/-
dc.identifier.pissn1549-1277-
dc.identifier.eissn1549-1676-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle組織維持を担う細胞群個体群動態の理解と定量的データ解析ja
jpcoar.awardTitleSystems Bone Biology --骨・軟骨疾患の発症予測から疾患予防へja
jpcoar.awardTitle生命科学におけるパターン形成の新しいモデルと数学的解析手法の確立ja
jpcoar.awardTitle遺伝子配列に刻まれた宿主と病原体の攻防を読み解くビックデータ生態学の創成ja
jpcoar.awardTitle新規培養系を利用したB型肝炎ウイルス侵入機序・宿主因子の包括的解析ja
jpcoar.awardTitle人工知能技術を用いた閉経後の女性の体重変遷と生活習慣病リスクの関係の解明ja
jpcoar.awardTitle造血幹細胞老化により変容する細胞ダイバーシティの数理科学的解析ja
jpcoar.awardTitle宿主免疫および集団免疫をかいくぐり繁栄するウイルスの生存戦略を解くja
jpcoar.awardTitle造血幹細胞が維持する細胞ダイバーシティの数理科学的解析ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons