このアイテムのアクセス数: 94
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2177-19.pdf | 5.78 MB | Adobe PDF | 見る/開く |
タイトル: | AN ELEMENTARY AND DIRECT COMPUTATION OF COHOMOLOGY WITH AND WITHOUT A GROUP ACTION (Probability Symposium) |
著者: | SASADA, MAKIKO |
著者名の別形: | 佐々田, 槙子 |
発行日: | Apr-2021 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2177 |
開始ページ: | 133 |
終了ページ: | 140 |
抄録: | Recently, we introduced a configuration space with interaction structure and a uniform local cohomology on it with co-authors in [1]. The notion is used to understand a common structure of infinite product spaces appeared in the proof of Varadhan's non-gradient method. For this, the cohomology of the configuration space with a group action is the main target to study, but the cohomology is easily obtained from that of the configuration space without a group action by applying a well-known property on the group cohomology. In fact, the analysis of the cohomology of the configuration space without a group action is the essential part of [l]. In this article, we give an elementary and direct proof to obtain the cohomology of a space with a group action from that without a group action under a certain condition including the setting of the configuration space with interaction structure. In particular, no knowledge of group cohomology is required. |
URI: | http://hdl.handle.net/2433/264819 |
出現コレクション: | 2177 確率論シンポジウム |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。