このアイテムのアクセス数: 128
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2185-09.pdf | 5.04 MB | Adobe PDF | 見る/開く |
タイトル: | 円内接七・八角形の「面積x半径」公式の計算について |
その他のタイトル: | Computing the "area times circumradius" formula for cyclic heptagons and octagons : Extended Abstract (Computer Algebra - Theory and its Applications) |
著者: | 森継, 修一 ![]() |
著者名の別形: | MORITSUGU, SHUICHI |
発行日: | Apr-2021 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2185 |
開始ページ: | 94 |
終了ページ: | 103 |
抄録: | This paper describes computations of the relations between the circumradius R and area S of cyclic polygons given by the lengths of the sides. The classic results of Heron and Brahmagupta clearly show that the product of R and S is expressed by the lengths of the sides for triangles and cyclic quadrilaterals. In the author's previous paper (2015), the similar integrated formulae of the circumradius and the area for cyclic pentagons and hexagons were computed using elimination by resultants and factorization of polynomials. In this study, we try to compute analogous formulae for cyclic heptagons and octagons. However, we consider the method of numerical interpolation in this case, instead of elimination. As a result, we succeeded in computing the integrated formula for cyclic heptagons, where it should be a polynomial equation in z = 4SR with degree 38 and 31, 590 terms. |
URI: | http://hdl.handle.net/2433/264920 |
出現コレクション: | 2185 Computer Algebra - Theory and its Applications |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。