このアイテムのアクセス数: 128

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2185-09.pdf5.04 MBAdobe PDF見る/開く
タイトル: 円内接七・八角形の「面積x半径」公式の計算について
その他のタイトル: Computing the "area times circumradius" formula for cyclic heptagons and octagons : Extended Abstract (Computer Algebra - Theory and its Applications)
著者: 森継, 修一  KAKEN_name
著者名の別形: MORITSUGU, SHUICHI
発行日: Apr-2021
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2185
開始ページ: 94
終了ページ: 103
抄録: This paper describes computations of the relations between the circumradius R and area S of cyclic polygons given by the lengths of the sides. The classic results of Heron and Brahmagupta clearly show that the product of R and S is expressed by the lengths of the sides for triangles and cyclic quadrilaterals. In the author's previous paper (2015), the similar integrated formulae of the circumradius and the area for cyclic pentagons and hexagons were computed using elimination by resultants and factorization of polynomials. In this study, we try to compute analogous formulae for cyclic heptagons and octagons. However, we consider the method of numerical interpolation in this case, instead of elimination. As a result, we succeeded in computing the integrated formula for cyclic heptagons, where it should be a polynomial equation in z = 4SR with degree 38 and 31, 590 terms.
URI: http://hdl.handle.net/2433/264920
出現コレクション:2185 Computer Algebra - Theory and its Applications

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。