このアイテムのアクセス数: 144
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
RIMS1952.pdf | 351.54 kB | Adobe PDF | 見る/開く |
タイトル: | Anabelian Group-theoretic Properties of the Pro-p Absolute Galois Groups of Henselian Discrete Valuation Fields |
著者: | MINAMIDE, Arata TSUJIMURA, Shota |
キーワード: | 12E30 14F35 absolute Galois group Henselian discrete valuation field elastic internally indecomposable Artin-Schreier equation étale fundamental group anabelian geometry semi-absolute |
発行日: | Aug-2021 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
開始ページ: | 1 |
終了ページ: | 28 |
論文番号: | RIMS-1952 |
抄録: | Let p be a prime number; K a Henselian discrete valuation field of characteristic 0 such that the residue field is an infinite field of characteristic p. Write GK for the absolute Galois group of K. In our previous papers, under the assumption that K contains a primitive p-th root of unity ζp, we proved that any almost pro-p-maximal quotient of GK satisfies certain “anabelian” group-theoretic properties called very elasticity and strong internal indecomposability. In the present paper, we generalize this result to the case where K does not necessarily contain ζp. Then, by applying this generalization, together with some facts concerning Hilber-tian fields, we prove the semiabsoluteness of isomorphisms between thepro-p etale fundamental groups of smooth varieties over certain classes offields of characteristic 0. Moreover, we observe that there are various sim-ilarities between the maximal pro-p quotient GpK of GK and non abelianfree pro-p groups. For instance, we verify that every topologically finitely generated closed subgroup of GpK is a free pro-p group. One of the key ingredients of our proofs is “Artin-Schreier theory in characteristic zero”introduced by MacKenzie and Whaples. |
URI: | http://hdl.handle.net/2433/265031 |
関連リンク: | http://www.kurims.kyoto-u.ac.jp/preprint/index.html |
出現コレクション: | 数理解析研究所プレプリント |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。