このアイテムのアクセス数: 120
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
sciadv.abi5878.pdf | 3.76 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ohmura, Takuya | en |
dc.contributor.author | Nishigami, Yukinori | en |
dc.contributor.author | Taniguchi, Atsushi | en |
dc.contributor.author | Nonaka, Shigenori | en |
dc.contributor.author | Ishikawa, Takuji | en |
dc.contributor.author | Ichikawa, Masatoshi | en |
dc.contributor.alternative | 大村, 拓也 | ja |
dc.contributor.alternative | 西上, 幸範 | ja |
dc.contributor.alternative | 谷口, 篤史 | ja |
dc.contributor.alternative | 野中, 茂紀 | ja |
dc.contributor.alternative | 石川, 拓司 | ja |
dc.contributor.alternative | 市川, 正敏 | ja |
dc.date.accessioned | 2021-10-25T09:51:45Z | - |
dc.date.available | 2021-10-25T09:51:45Z | - |
dc.date.issued | 2021-10 | - |
dc.identifier.uri | http://hdl.handle.net/2433/265517 | - |
dc.description | 泳ぐ微生物が海まで流されない理由 --SDGsに欠かせない小さな生物たちの振る舞いを解明--. 京都大学プレスリリース. 2021-10-21. | ja |
dc.description.abstract | To survive in harsh environments, single-celled microorganisms autonomously respond to external stimuli, such as light, heat, and flow. Here, we elucidate the flow response of Tetrahymena, a well-known single-celled freshwater microorganism. Tetrahymena moves upstream against an external flow via a behavior called rheotaxis. While micrometer-sized particles are swept away downstream in a viscous flow, what dynamics underlie the rheotaxis of the ciliate? Our experiments reveal that Tetrahymena slides along walls during upstream movement, which indicates that the cells receive rotational torque from shear flow to control cell orientation. To evaluate the effects of the shear torque and propelling speed, we perform a numerical simulation with a hydrodynamic model swimmer adopting cilia dynamics in a shear flow. The swimmer orientations converge to an upstream alignment, and the swimmer slides upstream along a boundary wall. The results suggest that Tetrahymena automatically responds to shear flow by performing rheotaxis using cilia-stalling mechanics. | en |
dc.language.iso | eng | - |
dc.publisher | American Association for the Advancement of Science (AAAS) | en |
dc.rights | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). | en |
dc.rights | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | - |
dc.title | Near-wall rheotaxis of the ciliate Tetrahymena induced by the kinesthetic sensing of cilia | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Science Advances | en |
dc.identifier.volume | 7 | - |
dc.identifier.issue | 43 | - |
dc.relation.doi | 10.1126/sciadv.abi5878 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | eabi5878 | - |
dc.address | Max Planck Institute for Terrestrial Microbiology; Biozentrum, University of Basel | en |
dc.address | Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University | en |
dc.address | Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, ; Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems (ExCELLS) | en |
dc.address | Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology; Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems (ExCELLS) | en |
dc.address | Graduate School of Engineering, Tohoku University; Graduate School of Biomedical Engineering, Tohoku University | en |
dc.address | Department of Physics, Kyoto University | en |
dc.identifier.pmid | 34669467 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2021-10-21-0 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19KK0180 | - |
datacite.awardNumber | 17J10331 | - |
datacite.awardNumber | 17H00853 | - |
datacite.awardNumber | 21H04999 | - |
datacite.awardNumber | 26707020 | - |
datacite.awardNumber | 21K03855 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19KK0180/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17J10331/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H00853/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H04999/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26707020/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K03855/ | - |
dc.identifier.eissn | 2375-2548 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 再構成アプローチで解明するダイナミンの膜切断機構とその破綻に起因する疾患発症機序 | ja |
jpcoar.awardTitle | 壁付近・せん断流れ下における繊毛虫遊泳メカニズムの解明 | ja |
jpcoar.awardTitle | 微生物バイオメカニクスの深化 | ja |
jpcoar.awardTitle | 生物系アクティブマターの予測と制御を目指した移動現象論の構築 | ja |
jpcoar.awardTitle | 駆動するバイオ・ソフトマター --シンプルな界面現象からのアプローチ-- | ja |
jpcoar.awardTitle | 自己推進液滴の運動多様性をもたらす分岐構造の解明と集団運動 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス