Downloads: 22
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2190-18.pdf | 4.26 MB | Adobe PDF | View/Open |
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KONDO, ATSUMASA | en |
dc.contributor.alternative | 近藤, 豊将 | ja |
dc.contributor.transcription | コンドウ, アツマサ | ja-Kana |
dc.date.accessioned | 2021-11-01T01:41:02Z | - |
dc.date.available | 2021-11-01T01:41:02Z | - |
dc.date.issued | 2021-07 | - |
dc.identifier.uri | http://hdl.handle.net/2433/265665 | - |
dc.description.abstract | In this article, we present methods for finding common fixed points of nonexpansive mappings. First, Mann type weak convergence theorems are proved. As a corollary, we obtain an alternative method to Mann's type iteration for finding a fixed point of a nonexpansive mapping. Also, a strong convergence theorem of Halpern type iterations is presented. The results base on those of Kondo and Takahashi [6]. | en |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.subject | common fixed point | en |
dc.subject | nonexpansive mapping | en |
dc.subject | Mann's iteration | en |
dc.subject | Halpern's iteration | en |
dc.subject.ndc | 410 | - |
dc.title | CONVERGENCE THEOREMS TO COMMON FIXED POINTS OF TWO NONEXPANSIVE MAPPINGS IN HILBERT SPACES (Study on Nonlinear Analysis and Convex Analysis) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2190 | - |
dc.identifier.spage | 134 | - |
dc.identifier.epage | 142 | - |
dc.textversion | publisher | - |
dc.sortkey | 18 | - |
dc.address | DEPARTMENT OF ECONOMICS, SHIGA UNIVERSITY | en |
dc.address.alternative | 滋賀大学 | ja |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 1880-2818 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
Appears in Collections: | Study on Nonlinear Analysis and Convex Analysis |

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.