このアイテムのアクセス数: 70

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2197-18.pdf722.06 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKohnen, Winfrieden
dc.date.accessioned2021-11-01T01:41:25Z-
dc.date.available2021-11-01T01:41:25Z-
dc.date.issued2021-08-
dc.identifier.urihttp://hdl.handle.net/2433/265786-
dc.description.abstractIn my talk, I reported about recent joint work with S. Gun in which a new proof was given that for any non-zero cusp form of half-integral weight in the plus space of level 4 (not necessarily a Hecke eigenform) there exist infinitely many fundamental discriminants D such that the Fourier coefficients evaluated at IDI are non-zero. The proof uses a new type of Dirichlet series built out of the squarefree coefficients of a form of half-integral weight. The result was first proved (usuing totally different methods) by Saha. By adapting the resonance method due to K. Soundararajan one can in fact demonstrate that such coefficients must take quite large values. The above mentioned results and their proofs can be found in [S. Gun, W. Kohnen and K. Soundararajan, Large Fourier coefficients of modular forms of half-integral weight, http://arxiv.org/abs/2994.14450].en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleOn Fourier coefficients of modular forms of half-integral weight (Analytic, geometric and $p$-adic aspects of automorphic forms and $L$-functions)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2197-
dc.identifier.spage157-
dc.identifier.epage157-
dc.textversionpublisher-
dc.sortkey18-
dc.addressMathematisches Institut, Ruprecht-Karls-Universitat Heidelbergde
dc.relation.urlhttp://arxiv.org/abs/2994.14450-
dcterms.accessRightsopen access-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2197 保型形式とL関数の解析的、幾何的、p進的研究

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。