このアイテムのアクセス数: 161
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2201-07.pdf | 11.4 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Katsuda, Atsushi | en |
dc.contributor.alternative | 勝田, 篤 | ja |
dc.contributor.transcription | カツダ, アツシ | ja-Kana |
dc.date.accessioned | 2021-11-25T08:26:10Z | - |
dc.date.available | 2021-11-25T08:26:10Z | - |
dc.date.issued | 2021-09 | - |
dc.identifier.uri | http://hdl.handle.net/2433/266232 | - |
dc.description.abstract | The Bloch-Floquet theory are popular tools for the investigation of materials with periodic structures. For example, we can show that the spectrum of periodic Schrodinger operators have band structures. Here we shall extend the Bloch-Floquet theory, which is appicable to abelian groups, to the Heisenberg group. Our method is based on a combination of the representations of the discrete Heisenberg groups and of the Heisenberg Lie group. We apply this method to asymptotic problems for heat kernels and for counting prime closed geodesics. In this application, we need additional ingradients, the semi-classical analysis and the Chen's iterated integrals. As a by-product, we give another mathematical explanation of the semi-classical asymptotic expansion formula for the Hofstadter butterfly of Wilkinson, which is originally due to Helffer-Sjostrand. | en |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.subject | 58J50 | en |
dc.subject | 58J37 | en |
dc.subject | 58J35 | en |
dc.subject | 30F99 | en |
dc.subject | Bloch-Floquet theory | en |
dc.subject | Heisenberg group | en |
dc.subject | Asymptotic expansion | en |
dc.subject.ndc | 410 | - |
dc.title | An extension of the Bloch-Floquet theory to the Heisenberg group and its applications to asymptotic problems for heat kernels and prime closed geodesics (Mathematical aspects of quantum fields and related topics) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2201 | - |
dc.identifier.spage | 59 | - |
dc.identifier.epage | 75 | - |
dc.textversion | publisher | - |
dc.sortkey | 07 | - |
dc.address | Department of Mathematics, Kyushu University | en |
dc.address.alternative | 九州大学 | ja |
dcterms.accessRights | open access | - |
datacite.awardNumber | 18K03282 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K03282/ | - |
dc.identifier.pissn | 1880-2818 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | べき零拡大に対する素閉測地線の密度定理と熱核の漸近挙動 | ja |
出現コレクション: | 2201 量子場の数理とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。