このアイテムのアクセス数: 161

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2201-07.pdf11.4 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKatsuda, Atsushien
dc.contributor.alternative勝田, 篤ja
dc.contributor.transcriptionカツダ, アツシja-Kana
dc.date.accessioned2021-11-25T08:26:10Z-
dc.date.available2021-11-25T08:26:10Z-
dc.date.issued2021-09-
dc.identifier.urihttp://hdl.handle.net/2433/266232-
dc.description.abstractThe Bloch-Floquet theory are popular tools for the investigation of materials with periodic structures. For example, we can show that the spectrum of periodic Schrodinger operators have band structures. Here we shall extend the Bloch-Floquet theory, which is appicable to abelian groups, to the Heisenberg group. Our method is based on a combination of the representations of the discrete Heisenberg groups and of the Heisenberg Lie group. We apply this method to asymptotic problems for heat kernels and for counting prime closed geodesics. In this application, we need additional ingradients, the semi-classical analysis and the Chen's iterated integrals. As a by-product, we give another mathematical explanation of the semi-classical asymptotic expansion formula for the Hofstadter butterfly of Wilkinson, which is originally due to Helffer-Sjostrand.en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject58J50en
dc.subject58J37en
dc.subject58J35en
dc.subject30F99en
dc.subjectBloch-Floquet theoryen
dc.subjectHeisenberg groupen
dc.subjectAsymptotic expansionen
dc.subject.ndc410-
dc.titleAn extension of the Bloch-Floquet theory to the Heisenberg group and its applications to asymptotic problems for heat kernels and prime closed geodesics (Mathematical aspects of quantum fields and related topics)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2201-
dc.identifier.spage59-
dc.identifier.epage75-
dc.textversionpublisher-
dc.sortkey07-
dc.addressDepartment of Mathematics, Kyushu Universityen
dc.address.alternative九州大学ja
dcterms.accessRightsopen access-
datacite.awardNumber18K03282-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K03282/-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleべき零拡大に対する素閉測地線の密度定理と熱核の漸近挙動ja
出現コレクション:2201 量子場の数理とその周辺

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。