このアイテムのアクセス数: 194

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
5.0075425.pdf4.16 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTokuda, Yomeien
dc.contributor.authorFujisawa, Misaen
dc.contributor.authorOgawa, Jintoen
dc.contributor.authorUeda, Yoshikatsuen
dc.contributor.alternative徳田, 陽明ja
dc.contributor.alternative藤沢, 美沙ja
dc.contributor.alternative小川, 稔斗ja
dc.contributor.alternative上田, 義勝ja
dc.date.accessioned2022-01-14T03:07:31Z-
dc.date.available2022-01-14T03:07:31Z-
dc.date.issued2021-12-
dc.identifier.urihttp://hdl.handle.net/2433/267487-
dc.description.abstractIn this study, we built a model for predicting the optical dispersion property of oxide glasses via machine-learning techniques such as kernel ridge regression, neural networks, and random forests. The models precisely predicted the optical property. Based on the predictions for glasses with doped oxides, we prepared new glasses in our laboratory. The experiments agreed well with the predictions made using kernel ridge regression and neural networks but not with those made using random forests. The results of this study demonstrate that the data-driven approach is a promising route for new material design.en
dc.language.isoeng-
dc.publisherAIP Publishingen
dc.rights© 2021 Author(s).en
dc.rightsAll article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.titleA machine learning approach to the prediction of the dispersion property of oxide glassen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAIP Advancesen
dc.identifier.volume11-
dc.identifier.issue12-
dc.relation.doi10.1063/5.0075425-
dc.textversionpublisher-
dc.identifier.artnum125127-
dcterms.accessRightsopen access-
dc.identifier.eissn2158-3226-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons