このアイテムのアクセス数: 143

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2019ja026951.pdf4.25 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorEbihara, Yusukeen
dc.contributor.authorIkeda, Takuyaen
dc.contributor.authorOmura, Yoshiharuen
dc.contributor.authorTanaka, Takashien
dc.contributor.authorFok, Mei‐Chingen
dc.contributor.alternative海老原, 祐輔ja
dc.contributor.alternative池田, 拓也ja
dc.contributor.alternative大村, 善治ja
dc.date.accessioned2022-02-02T00:36:11Z-
dc.date.available2022-02-02T00:36:11Z-
dc.date.issued2020-01-
dc.identifier.urihttp://hdl.handle.net/2433/267742-
dc.description.abstractWe show the regions where nonlinear growth of whistler-mode chorus waves is preferred to occur in the inner magnetosphere. A global magnetohydrodynamics (MHD) simulation was used to obtain large-scale electric and magnetic fields under the southward interplanetary magnetic field condition. With the electric and magnetic fields obtained by the MHD simulation, we ran a comprehensive inner magnetosphere-ionosphere model to solve the evolution of phase space density of electrons. Hot electrons originating from the tail region drift sunward and penetrate deep into the inner region due to a combination of convection and substorm-associated electric fields. Cold electrons also drift sunward, resulting in a contraction of the plasmasphere. We obtained the following results. (1) The whistler waves can first grow due to the linear mechanism (pitch angle anisotropy) in the premidnight-prenoon region outside the plasmapause, followed by rapid, nonlinear mechanism accompanied with rising-tone chorus elements. (2) When the solar wind speed is high, the whistler waves grow more efficiently due to linear and nonlinear mechanisms over a wider area because of deep penetration of hot electrons and the large contraction of the plasmasphere. This is consistent with the observation that the outer belt electrons increase for the fast solar wind. (3) For slow solar wind, the linear growth is mostly suppressed, but the nonlinear growth can still take place when external seed waves are present. This may explain the persistence of dawn chorus and large-amplitude chorus waves that are often observed in the premidnight-postdawn region in relatively weak geomagnetic activities.en
dc.language.isoeng-
dc.publisherAmerican Geophysical Union (AGU)en
dc.rights© 2020. The Authors.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectwhistler-mode chorus waveen
dc.subjectnonlinear growthen
dc.subjectinner magnetosphereen
dc.subjectsimulationen
dc.subjectsubstormen
dc.subjectconvectionen
dc.titleNonlinear Wave Growth Analysis of Whistler‐Mode Chorus Generation Regions Based on Coupled MHD and Advection Simulation of the Inner Magnetosphereen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Geophysical Research: Space Physicsen
dc.identifier.volume125-
dc.identifier.issue1-
dc.relation.doi10.1029/2019ja026951-
dc.textversionpublisher-
dc.identifier.artnume2019JA026951-
dcterms.accessRightsopen access-
datacite.awardNumber15H03732-
datacite.awardNumber15H05815-
datacite.awardNumber17H06140-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15H03732/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-15H05815/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H06140/-
dc.identifier.pissn2169-9380-
dc.identifier.eissn2169-9402-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle非線形波動粒子相互作用・非拡散的粒子輸送に基づく地球放射線帯グローバル変動の研究ja
jpcoar.awardTitle地球電磁気圏擾乱現象の発生機構の解明と予測ja
jpcoar.awardTitle宇宙プラズマ中の電磁サイクロトロン波による電子加速散乱機構の実証的研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons