このアイテムのアクセス数: 73

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2204-20.pdf9.97 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYOSHIKAWA, KEN-ICHIen
dc.contributor.alternative吉川, 謙一ja
dc.contributor.transcriptionヨシカワ, ケンイチja-Kana
dc.date.accessioned2022-02-03T01:56:26Z-
dc.date.available2022-02-03T01:56:26Z-
dc.date.issued2021-12-
dc.identifier.urihttp://hdl.handle.net/2433/267820-
dc.description.abstractA holomorphic torsion invariant of K3 surfaces with involution was introduced by the author [Yoshikawa, K.-I. K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, Invent. Math. 156 (2004), 53-117.], and it has been proved in [Ma, S., Yoshikawa, K.-I. K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: The structure of the invariant, Compositio Math. 156 (2020), 1965-2019.] that this invariant is expressed as the product of an explicit Borcherds product and an explicit Siegel modular form. In this note, we report that these automorphic forms are closed under the operation called quasi-pullback (Theorem 5.9). As a result, we obtain some Borcherds products as the quasi-pullback of certain Siegel modular form (Theorem 5.8).en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleQUASI-PULLBACK OF CERTAIN SIEGEL MODULAR FORMS AND BORCHERDS PRODUCTS (Automorphic forms, Automorphic representations, Galois representations, and its related topics)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2204-
dc.identifier.spage182-
dc.identifier.epage194-
dc.textversionpublisher-
dc.sortkey20-
dc.addressDEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KYOTO UNIVERSITYen
dc.address.alternative京都大学ja
dcterms.accessRightsopen access-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2204 保型形式,保型表現, ガロア表現とその周辺

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。