ダウンロード数: 42

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41598-020-78781-6.pdf2.25 MBAdobe PDF見る/開く
タイトル: Identifying transcription factors that reduce wood recalcitrance and improve enzymatic degradation of xylem cell wall in Populus
著者: Hori, Chiaki
Takata, Naoki
Lam, Pui Ying
Tobimatsu, Yuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-7578-7392 (unconfirmed)
Nagano, Soichiro
Mortimer, Jenny C.
Cullen, Dan
著者名の別形: 飛松, 裕基
キーワード: Cell wall
Plant biotechnology
発行日: 2020
出版者: Springer Nature
誌名: Scientific Reports
巻: 10
論文番号: 22043
抄録: Developing an efficient deconstruction step of woody biomass for biorefinery has been drawing considerable attention since its xylem cell walls display highly recalcitrance nature. Here, we explored transcriptional factors (TFs) that reduce wood recalcitrance and improve saccharification efficiency in Populus species. First, 33 TF genes up-regulated during poplar wood formation were selected as potential regulators of xylem cell wall structure. The transgenic hybrid aspens (Populus tremula × Populus tremuloides) overexpressing each selected TF gene were screened for in vitro enzymatic saccharification. Of these, four transgenic seedlings overexpressing previously uncharacterized TF genes increased total glucan hydrolysis on average compared to control. The best performing lines overexpressing Pt × tERF123 and Pt × tZHD14 were further grown to form mature xylem in the greenhouse. Notably, the xylem cell walls exhibited significantly increased total xylan hydrolysis as well as initial hydrolysis rates of glucan. The increased saccharification of Pt × tERF123-overexpressing lines could reflect the improved balance of cell wall components, i.e., high cellulose and low xylan and lignin content, which could be caused by upregulation of cellulose synthase genes upon the expression of Pt × tERF123. Overall, we successfully identified Pt × tERF123 and Pt × tZHD14 as effective targets for reducing cell wall recalcitrance and improving the enzymatic degradation of woody plant biomass.
著作権等: © The Author(s) 2020.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/267877
DOI(出版社版): 10.1038/s41598-020-78781-6
PubMed ID: 33328495
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons