このアイテムのアクセス数: 106

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
a64b0p23.pdf928.56 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author中下, 早織ja
dc.contributor.author榎本, 剛ja
dc.contributor.alternativeNAKASHITA, Saorien
dc.contributor.alternativeENOMOTO, Takeshien
dc.date.accessioned2022-02-26T05:41:26Z-
dc.date.available2022-02-26T05:41:26Z-
dc.date.issued2021-12-
dc.identifier.urihttp://hdl.handle.net/2433/268161-
dc.description.abstractWe investigate the performance of the Maximum Likelihood Ensemble Filter (MLEF) in assimilation of nonlinear observations. MLEF is a variational-ensemble data assimilation method, and can treat differentiable or non-differentiable nonlinear observation operators. In this study, we compare MLEF with the Ensemble Transform Kalman Filter (ETKF) in assimilation experiments with a one-dimensional Burgers model. The ETKF analysis with a certain formulation of nonlinear operators diverges when the observation nonlinearity is strong and the observation error is small. This divergence is found to be associated with an extra rank of ensemble perturbation matrix. Optimization in MLEF can improve the analysis to the level comparable to or better than ETKF. In addition, the smaller observation error is, or the stronger observation nonlinearity is, MLEF with the nonlinear operators can assimilate observations more effectively than MLEF with the tangent linear operators. However, the strong nonlinearity hinders convergence. We found that re-evaluation of the Hessian preconditioning matrix can alleviate such poor convergence. These encouraging results indicate that MLEF can incorporate nonlinear effects and evaluate observations appropriately.en
dc.language.isojpn-
dc.publisher京都大学防災研究所ja
dc.publisher.alternativeDisaster Prevention Research Institute, Kyoto Universityen
dc.subject最尤推定ja
dc.subjectアンサンブルデータ同化ja
dc.subject数値最適化ja
dc.subject非線形観測演算子ja
dc.subjectMaximum Likelihood Estimationen
dc.subjectEnsemble data assimilationen
dc.subjectNumerical optimizationen
dc.subjectNonlinear observation operatoren
dc.subject.ndc519.9-
dc.title最尤法アンサンブルフィルタを用いた非線形観測の同化ja
dc.title.alternativeAssimilation of Nonlinear Observations Using the Maximum Likelihood Ensemble Filteren
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00027784-
dc.identifier.jtitle京都大学防災研究所年報. Bja
dc.identifier.volume64-
dc.identifier.issueB-
dc.identifier.spage294-
dc.identifier.epage304-
dc.textversionpublisher-
dc.sortkey24-
dc.address京都大学大学院理学研究科ja
dc.address京都大学防災研究所ja
dc.address.alternativeGraduate School of Science, Kyoto Universityen
dc.address.alternativeDisaster Prevention Research Institute, Kyoto Universityen
dc.relation.urlhttp://www.dpri.kyoto-u.ac.jp/publications/nenpo/-
dcterms.accessRightsopen access-
dc.identifier.pissn0386-412X-
dc.identifier.jtitle-alternativeDisaster Prevention Research Institute Annuals. Ben
出現コレクション:Vol.64 B

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。