このアイテムのアクセス数: 105

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
fmolb.2021.738829.pdf1.19 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorZhang, Xiao Minen
dc.contributor.authorYokoyama, Tatsushien
dc.contributor.authorSakamoto, Masayukien
dc.contributor.alternative横山, 達士ja
dc.contributor.alternative坂本, 雅行ja
dc.date.accessioned2022-03-03T09:22:10Z-
dc.date.available2022-03-03T09:22:10Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2433/268287-
dc.description.abstractMembrane potential is the critical parameter that reflects the excitability of a neuron, and it is usually measured by electrophysiological recordings with electrodes. However, this is an invasive approach that is constrained by the problems of lacking spatial resolution and genetic specificity. Recently, the development of a variety of fluorescent probes has made it possible to measure the activity of individual cells with high spatiotemporal resolution. The adaptation of this technique to image electrical activity in neurons has become an informative method to study neural circuits. Genetically encoded voltage indicators (GEVIs) can be used with superior performance to accurately target specific genetic populations and reveal neuronal dynamics on a millisecond scale. Microbial rhodopsins are commonly used as optogenetic actuators to manipulate neuronal activities and to explore the circuit mechanisms of brain function, but they also can be used as fluorescent voltage indicators. In this review, we summarize recent advances in the design and the application of rhodopsin-based GEVIs.en
dc.language.isoeng-
dc.publisherFrontiers Media SAen
dc.rights© 2021 Zhang, Yokoyama and Sakamoto.en
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectvoltage imagingen
dc.subjectmicrobial rhodopsinsen
dc.subjectphotocycleen
dc.subjectFRET (förster resonance energy transfer)en
dc.subjectoptogeneticsen
dc.subjectin vivo imagingen
dc.titleImaging Voltage with Microbial Rhodopsinsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleFrontiers in Molecular Biosciencesen
dc.identifier.volume8-
dc.relation.doi10.3389/fmolb.2021.738829-
dc.textversionpublisher-
dc.identifier.artnum738829-
dc.identifier.pmid34513932-
dcterms.accessRightsopen access-
datacite.awardNumber20H04122-
datacite.awardNumber21K19429-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H04122/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K19429/-
dc.identifier.eissn2296-889X-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle多光子4Dイメージングによる生後発達期における新生ニューロンの機能的意義の解明ja
jpcoar.awardTitle多光子励起による生体多色活動計測・操作技術の開発と応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons