このアイテムのアクセス数: 113
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
978-3-030-87202-1_25.pdf | 2.11 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Nakao, Megumi | en |
dc.contributor.author | Tong, Fei | en |
dc.contributor.author | Nakamura, Mitsuhiro | en |
dc.contributor.author | Matsuda, Tetsuya | en |
dc.contributor.alternative | 中尾, 恵 | ja |
dc.contributor.alternative | 中村, 光宏 | ja |
dc.contributor.alternative | 松田, 哲也 | ja |
dc.date.accessioned | 2022-05-13T09:50:36Z | - |
dc.date.available | 2022-05-13T09:50:36Z | - |
dc.date.issued | 2021-09 | - |
dc.identifier.isbn | 9783030872021 | - |
dc.identifier.uri | http://hdl.handle.net/2433/270019 | - |
dc.description | 24th International Conference, Strasbourg, France, September 27–October 1, 2021 | en |
dc.description | Part of the Lecture Notes in Computer Science book series (LNIP, volume 12904) | en |
dc.description.abstract | Shape reconstruction of deformable organs from two-dimensional X-ray images is a key technology for image-guided intervention. In this paper, we propose an image-to-graph convolutional network (IGCN) for deformable shape reconstruction from a single-viewpoint projection image. The IGCN learns relationship between shape/deformation variability and the deep image features based on a deformation mapping scheme. In experiments targeted to the respiratory motion of abdominal organs, we confirmed the proposed framework with a regularized loss function can reconstruct liver shapes from a single digitally reconstructed radiograph with a mean distance error of 3.6 mm. | en |
dc.language.iso | eng | - |
dc.publisher | Springer International Publishing | en |
dc.rights | This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-87202-1_25 | en |
dc.rights | The full-text file will be made open to the public on 21 September 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.subject | Graph convolutional network | en |
dc.subject | Shape reconstruction | en |
dc.subject | Respiratory motion | en |
dc.subject | X-ray image | en |
dc.title | Image-to-Graph Convolutional Network for Deformable Shape Reconstruction from a Single Projection Image | en |
dc.type | conference paper | - |
dc.type.niitype | Conference Paper | - |
dc.identifier.jtitle | Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 | en |
dc.identifier.spage | 259 | - |
dc.identifier.epage | 268 | - |
dc.relation.doi | 10.1007/978-3-030-87202-1_25 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2022-09-21 | - |
datacite.awardNumber | 18H02766 | - |
datacite.awardNumber | 19H04484 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02766/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04484/ | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 統計呼吸動体モデルを軸とした寡分割高精度放射線治療技術の開発 | ja |
jpcoar.awardTitle | スパースモデリングを応用した外科学知識の体系化基盤の構築 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。