このアイテムのアクセス数: 113

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
978-3-030-87202-1_25.pdf2.11 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNakao, Megumien
dc.contributor.authorTong, Feien
dc.contributor.authorNakamura, Mitsuhiroen
dc.contributor.authorMatsuda, Tetsuyaen
dc.contributor.alternative中尾, 恵ja
dc.contributor.alternative中村, 光宏ja
dc.contributor.alternative松田, 哲也ja
dc.date.accessioned2022-05-13T09:50:36Z-
dc.date.available2022-05-13T09:50:36Z-
dc.date.issued2021-09-
dc.identifier.isbn9783030872021-
dc.identifier.urihttp://hdl.handle.net/2433/270019-
dc.description24th International Conference, Strasbourg, France, September 27–October 1, 2021en
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNIP, volume 12904)en
dc.description.abstractShape reconstruction of deformable organs from two-dimensional X-ray images is a key technology for image-guided intervention. In this paper, we propose an image-to-graph convolutional network (IGCN) for deformable shape reconstruction from a single-viewpoint projection image. The IGCN learns relationship between shape/deformation variability and the deep image features based on a deformation mapping scheme. In experiments targeted to the respiratory motion of abdominal organs, we confirmed the proposed framework with a regularized loss function can reconstruct liver shapes from a single digitally reconstructed radiograph with a mean distance error of 3.6 mm.en
dc.language.isoeng-
dc.publisherSpringer International Publishingen
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-87202-1_25en
dc.rightsThe full-text file will be made open to the public on 21 September 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectGraph convolutional networken
dc.subjectShape reconstructionen
dc.subjectRespiratory motionen
dc.subjectX-ray imageen
dc.titleImage-to-Graph Convolutional Network for Deformable Shape Reconstruction from a Single Projection Imageen
dc.typeconference paper-
dc.type.niitypeConference Paper-
dc.identifier.jtitleMedical Image Computing and Computer Assisted Intervention – MICCAI 2021en
dc.identifier.spage259-
dc.identifier.epage268-
dc.relation.doi10.1007/978-3-030-87202-1_25-
dc.textversionauthor-
dcterms.accessRightsopen access-
datacite.date.available2022-09-21-
datacite.awardNumber18H02766-
datacite.awardNumber19H04484-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02766/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04484/-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle統計呼吸動体モデルを軸とした寡分割高精度放射線治療技術の開発ja
jpcoar.awardTitleスパースモデリングを応用した外科学知識の体系化基盤の構築ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。