このアイテムのアクセス数: 252
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
pcn.13350.pdf | 492.88 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Takeuchi, Hideaki | en |
dc.contributor.author | Yahata, Noriaki | en |
dc.contributor.author | Lisi, Giuseppe | en |
dc.contributor.author | Tsurumi, Kosuke | en |
dc.contributor.author | Yoshihara, Yujiro | en |
dc.contributor.author | Kawada, Ryosaku | en |
dc.contributor.author | Murao, Takuro | en |
dc.contributor.author | Mizuta, Hiroto | en |
dc.contributor.author | Yokomoto, Tatsunori | en |
dc.contributor.author | Miyagi, Takashi | en |
dc.contributor.author | Nakagami, Yukako | en |
dc.contributor.author | Yoshioka, Toshinori | en |
dc.contributor.author | Yoshimoto, Junichiro | en |
dc.contributor.author | Kawato, Mitsuo | en |
dc.contributor.author | Murai, Toshiya | en |
dc.contributor.author | Morimoto, Jun | en |
dc.contributor.author | Takahashi, Hidehiko | en |
dc.contributor.alternative | 竹内, 秀暁 | ja |
dc.contributor.alternative | 八幡, 憲明 | ja |
dc.contributor.alternative | 鶴身, 孝介 | ja |
dc.contributor.alternative | 吉原, 雄二郎 | ja |
dc.contributor.alternative | 川田, 良作 | ja |
dc.contributor.alternative | 村尾, 託朗 | ja |
dc.contributor.alternative | 水田, 弘人 | ja |
dc.contributor.alternative | 横本, 竜徳 | ja |
dc.contributor.alternative | 宮城, 崇史 | ja |
dc.contributor.alternative | 中神, 由香子 | ja |
dc.contributor.alternative | 吉岡, 利福 | ja |
dc.contributor.alternative | 吉本, 潤一郎 | ja |
dc.contributor.alternative | 川人, 光男 | ja |
dc.contributor.alternative | 村井, 俊哉 | ja |
dc.contributor.alternative | 森本, 淳 | ja |
dc.contributor.alternative | 高橋, 英彦 | ja |
dc.date.accessioned | 2022-06-06T01:00:54Z | - |
dc.date.available | 2022-06-06T01:00:54Z | - |
dc.date.issued | 2022-06 | - |
dc.identifier.uri | http://hdl.handle.net/2433/274260 | - |
dc.description | 脳機能結合の情報からギャンブル障害の判別器を開発 --人工知能技術の応用により診断や治療に新たな道!--. 京都大学プレスリリース. 2022-04-15. | ja |
dc.description.abstract | [Aim] Recently, a machine-learning (ML) technique has been used to create generalizable classifiers for psychiatric disorders based on information of functional connections (FCs) between brain regions at resting state. These classifiers predict diagnostic labels by a weighted linear sum (WLS) of the correlation values of a small number of selected FCs. We aimed to develop a generalizable classifier for gambling disorder (GD) from the information of FCs using the ML technique and examine relationships between WLS and clinical data. [Methods] As a training dataset for ML, data from 71 GD patients and 90 healthy controls (HCs) were obtained from two magnetic resonance imaging sites. We used an ML algorithm consisting of a cascade of an L1-regularized sparse canonical correlation analysis and a sparse logistic regression to create the classifier. The generalizability of the classifier was verified using an external dataset. This external dataset consisted of six GD patients and 14 HCs, and was collected at a different site from the sites of the training dataset. Correlations between WLS and South Oaks Gambling Screen (SOGS) and duration of illness were examined. [Results] The classifier distinguished between the GD patients and HCs with high accuracy in leave-one-out cross-validation (area under curve (AUC = 0.89)). This performance was confirmed in the external dataset (AUC = 0.81). There was no correlation between WLS, and SOGS and duration of illness in the GD patients. [Conclusion] We developed a generalizable classifier for GD based on information of functional connections between brain regions at resting state. | en |
dc.language.iso | eng | - |
dc.publisher | Wiley | en |
dc.publisher | Japanese Society of Psychiatry and Neurology | en |
dc.rights | © 2022 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. | en |
dc.rights | This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | - |
dc.subject | functional connection | en |
dc.subject | gambling disorder | en |
dc.subject | generalizable classifier | en |
dc.subject | machine learning | en |
dc.title | Development of a classifier for gambling disorder based on functional connections between brain regions | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Psychiatry and Clinical Neurosciences | en |
dc.identifier.volume | 76 | - |
dc.identifier.issue | 6 | - |
dc.identifier.spage | 260 | - |
dc.identifier.epage | 267 | - |
dc.relation.doi | 10.1111/pcn.13350 | - |
dc.textversion | publisher | - |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University | en |
dc.address | Institute for Quantum Life Science, National Institutes for Quantum Science and Technology; Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology; Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR) | en |
dc.address | Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR); Nagoya Institute of Technology | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Kyoto University Health Service | en |
dc.address | Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR) | en |
dc.address | Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR); Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology | en |
dc.address | Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology | en |
dc.address | Department of Psychiatry, Graduate School of Medicine, Kyoto University | en |
dc.address | Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR) | en |
dc.address | Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University | en |
dc.identifier.pmid | 35279904 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2022-04-15-2 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17K16376 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K16376/ | - |
dc.identifier.pissn | 1323-1316 | - |
dc.identifier.eissn | 1440-1819 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | ギャンブル障害のコネクトームについて | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス