このアイテムのアクセス数: 252

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
pcn.13350.pdf492.88 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTakeuchi, Hideakien
dc.contributor.authorYahata, Noriakien
dc.contributor.authorLisi, Giuseppeen
dc.contributor.authorTsurumi, Kosukeen
dc.contributor.authorYoshihara, Yujiroen
dc.contributor.authorKawada, Ryosakuen
dc.contributor.authorMurao, Takuroen
dc.contributor.authorMizuta, Hirotoen
dc.contributor.authorYokomoto, Tatsunorien
dc.contributor.authorMiyagi, Takashien
dc.contributor.authorNakagami, Yukakoen
dc.contributor.authorYoshioka, Toshinorien
dc.contributor.authorYoshimoto, Junichiroen
dc.contributor.authorKawato, Mitsuoen
dc.contributor.authorMurai, Toshiyaen
dc.contributor.authorMorimoto, Junen
dc.contributor.authorTakahashi, Hidehikoen
dc.contributor.alternative竹内, 秀暁ja
dc.contributor.alternative八幡, 憲明ja
dc.contributor.alternative鶴身, 孝介ja
dc.contributor.alternative吉原, 雄二郎ja
dc.contributor.alternative川田, 良作ja
dc.contributor.alternative村尾, 託朗ja
dc.contributor.alternative水田, 弘人ja
dc.contributor.alternative横本, 竜徳ja
dc.contributor.alternative宮城, 崇史ja
dc.contributor.alternative中神, 由香子ja
dc.contributor.alternative吉岡, 利福ja
dc.contributor.alternative吉本, 潤一郎ja
dc.contributor.alternative川人, 光男ja
dc.contributor.alternative村井, 俊哉ja
dc.contributor.alternative森本, 淳ja
dc.contributor.alternative高橋, 英彦ja
dc.date.accessioned2022-06-06T01:00:54Z-
dc.date.available2022-06-06T01:00:54Z-
dc.date.issued2022-06-
dc.identifier.urihttp://hdl.handle.net/2433/274260-
dc.description脳機能結合の情報からギャンブル障害の判別器を開発 --人工知能技術の応用により診断や治療に新たな道!--. 京都大学プレスリリース. 2022-04-15.ja
dc.description.abstract[Aim] Recently, a machine-learning (ML) technique has been used to create generalizable classifiers for psychiatric disorders based on information of functional connections (FCs) between brain regions at resting state. These classifiers predict diagnostic labels by a weighted linear sum (WLS) of the correlation values of a small number of selected FCs. We aimed to develop a generalizable classifier for gambling disorder (GD) from the information of FCs using the ML technique and examine relationships between WLS and clinical data. [Methods] As a training dataset for ML, data from 71 GD patients and 90 healthy controls (HCs) were obtained from two magnetic resonance imaging sites. We used an ML algorithm consisting of a cascade of an L1-regularized sparse canonical correlation analysis and a sparse logistic regression to create the classifier. The generalizability of the classifier was verified using an external dataset. This external dataset consisted of six GD patients and 14 HCs, and was collected at a different site from the sites of the training dataset. Correlations between WLS and South Oaks Gambling Screen (SOGS) and duration of illness were examined. [Results] The classifier distinguished between the GD patients and HCs with high accuracy in leave-one-out cross-validation (area under curve (AUC = 0.89)). This performance was confirmed in the external dataset (AUC = 0.81). There was no correlation between WLS, and SOGS and duration of illness in the GD patients. [Conclusion] We developed a generalizable classifier for GD based on information of functional connections between brain regions at resting state.en
dc.language.isoeng-
dc.publisherWileyen
dc.publisherJapanese Society of Psychiatry and Neurologyen
dc.rights© 2022 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/-
dc.subjectfunctional connectionen
dc.subjectgambling disorderen
dc.subjectgeneralizable classifieren
dc.subjectmachine learningen
dc.titleDevelopment of a classifier for gambling disorder based on functional connections between brain regionsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePsychiatry and Clinical Neurosciencesen
dc.identifier.volume76-
dc.identifier.issue6-
dc.identifier.spage260-
dc.identifier.epage267-
dc.relation.doi10.1111/pcn.13350-
dc.textversionpublisher-
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto University; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental Universityen
dc.addressInstitute for Quantum Life Science, National Institutes for Quantum Science and Technology; Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology; Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR)en
dc.addressBrain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR); Nagoya Institute of Technologyen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressKyoto University Health Serviceen
dc.addressBrain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR)en
dc.addressBrain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR); Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technologyen
dc.addressApplied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technologyen
dc.addressDepartment of Psychiatry, Graduate School of Medicine, Kyoto Universityen
dc.addressBrain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR)en
dc.addressDepartment of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental Universityen
dc.identifier.pmid35279904-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2022-04-15-2-
dcterms.accessRightsopen access-
datacite.awardNumber17K16376-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K16376/-
dc.identifier.pissn1323-1316-
dc.identifier.eissn1440-1819-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleギャンブル障害のコネクトームについてja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons