このアイテムのアクセス数: 113

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s00028-022-00778-7.pdf1.05 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOgawa, Takayoshien
dc.contributor.authorShimizu, Senjoen
dc.contributor.alternative清水, 扇丈ja
dc.date.accessioned2022-06-07T09:36:36Z-
dc.date.available2022-06-07T09:36:36Z-
dc.date.issued2022-06-
dc.identifier.urihttp://hdl.handle.net/2433/274291-
dc.description.abstractEnd-point maximal $$L^1$$-regularity for parabolic initial-boundary value problems is considered. For the inhomogeneous Dirichlet and Neumann data, maximal $$L^1$$-regularity for initial-boundary value problems is established in time end-point case upon the homogeneous Besov space $${dot{B } }_{p, 1}^s({mathbb {R } }^n_+)$$ with $$1< p< infty $$ and $$-1+1/p<sle 0$$ as well as optimal trace estimates. The main estimates obtained here are sharp in the sense of trace estimates and it is not available by known theory on the class of UMD Banach spaces. We utilize a method of harmonic analysis, in particular, the almost orthogonal properties between the boundary potentials of the Dirichlet and the Neumann boundary data and the Littlewood-Paley dyadic decomposition of unity in the Besov and the Lizorkin–Triebel spaces.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© 2022 The Author(s)en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectParabolic equations with variable coefficientsen
dc.subjectMaximal $$L^1$$-regularityen
dc.subjectEnd-point estimateen
dc.subjectInitial-boundary value problemsen
dc.subjectThe Dirichlet problemen
dc.subjectThe Neumann problemen
dc.subject35K20en
dc.subject42B25en
dc.titleMaximal $$L^1$$-regularity for parabolic initial-boundary value problems with inhomogeneous dataen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Evolution Equationsen
dc.identifier.volume22-
dc.identifier.issue2-
dc.relation.doi10.1007/s00028-022-00778-7-
dc.textversionpublisher-
dc.identifier.artnum30-
dcterms.accessRightsopen access-
datacite.awardNumber19H05597-
datacite.awardNumber18H01131-
datacite.awardNumber20K20284-
datacite.awardNumber16H03945-
datacite.awardNumber21H00992-
datacite.awardNumber18KK0072-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H05597/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H01131/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K20284/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H03945/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H00992/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18KK0072/-
dc.identifier.pissn1424-3199-
dc.identifier.eissn1424-3202-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle臨界型非線形数理モデルにおける高次数理解析法の創造ja
jpcoar.awardTitle複雑流体のエントロピー消散構造と数理解析ja
jpcoar.awardTitle流体と燃焼の数学解析と未発見原理の創発ja
jpcoar.awardTitle圧縮性および非圧縮性粘性流体の相転移を伴う自由境界問題の適切性と安定性ja
jpcoar.awardTitle端点最大正則性原理とそのNavier-Stokes方程式への応用ja
jpcoar.awardTitle流体力学の近代数学解析ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons