このアイテムのアクセス数: 113
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s00028-022-00778-7.pdf | 1.05 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ogawa, Takayoshi | en |
dc.contributor.author | Shimizu, Senjo | en |
dc.contributor.alternative | 清水, 扇丈 | ja |
dc.date.accessioned | 2022-06-07T09:36:36Z | - |
dc.date.available | 2022-06-07T09:36:36Z | - |
dc.date.issued | 2022-06 | - |
dc.identifier.uri | http://hdl.handle.net/2433/274291 | - |
dc.description.abstract | End-point maximal $$L^1$$-regularity for parabolic initial-boundary value problems is considered. For the inhomogeneous Dirichlet and Neumann data, maximal $$L^1$$-regularity for initial-boundary value problems is established in time end-point case upon the homogeneous Besov space $${dot{B } }_{p, 1}^s({mathbb {R } }^n_+)$$ with $$1< p< infty $$ and $$-1+1/p<sle 0$$ as well as optimal trace estimates. The main estimates obtained here are sharp in the sense of trace estimates and it is not available by known theory on the class of UMD Banach spaces. We utilize a method of harmonic analysis, in particular, the almost orthogonal properties between the boundary potentials of the Dirichlet and the Neumann boundary data and the Littlewood-Paley dyadic decomposition of unity in the Besov and the Lizorkin–Triebel spaces. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © 2022 The Author(s) | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Parabolic equations with variable coefficients | en |
dc.subject | Maximal $$L^1$$-regularity | en |
dc.subject | End-point estimate | en |
dc.subject | Initial-boundary value problems | en |
dc.subject | The Dirichlet problem | en |
dc.subject | The Neumann problem | en |
dc.subject | 35K20 | en |
dc.subject | 42B25 | en |
dc.title | Maximal $$L^1$$-regularity for parabolic initial-boundary value problems with inhomogeneous data | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Evolution Equations | en |
dc.identifier.volume | 22 | - |
dc.identifier.issue | 2 | - |
dc.relation.doi | 10.1007/s00028-022-00778-7 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 30 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19H05597 | - |
datacite.awardNumber | 18H01131 | - |
datacite.awardNumber | 20K20284 | - |
datacite.awardNumber | 16H03945 | - |
datacite.awardNumber | 21H00992 | - |
datacite.awardNumber | 18KK0072 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H05597/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H01131/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K20284/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H03945/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H00992/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18KK0072/ | - |
dc.identifier.pissn | 1424-3199 | - |
dc.identifier.eissn | 1424-3202 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 臨界型非線形数理モデルにおける高次数理解析法の創造 | ja |
jpcoar.awardTitle | 複雑流体のエントロピー消散構造と数理解析 | ja |
jpcoar.awardTitle | 流体と燃焼の数学解析と未発見原理の創発 | ja |
jpcoar.awardTitle | 圧縮性および非圧縮性粘性流体の相転移を伴う自由境界問題の適切性と安定性 | ja |
jpcoar.awardTitle | 端点最大正則性原理とそのNavier-Stokes方程式への応用 | ja |
jpcoar.awardTitle | 流体力学の近代数学解析 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス