このアイテムのアクセス数: 98
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s41598-021-03658-1.pdf | 6.21 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Chuma, Shinichiro | en |
dc.contributor.author | Kanatsu-Shinohara, Mito | en |
dc.contributor.author | Katanaya, Ami | en |
dc.contributor.author | Hosokawa, Mihoko | en |
dc.contributor.author | Shinohara, Takashi | en |
dc.contributor.alternative | 中馬, 新一郎 | ja |
dc.contributor.alternative | 篠原, 美都 | ja |
dc.contributor.alternative | 刀谷, 在美 | ja |
dc.contributor.alternative | 細川, 美穂子 | ja |
dc.contributor.alternative | 篠原, 隆司 | ja |
dc.date.accessioned | 2022-06-22T02:07:28Z | - |
dc.date.available | 2022-06-22T02:07:28Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://hdl.handle.net/2433/274484 | - |
dc.description.abstract | Germline mutations underlie genetic diversity and species evolution. Previous studies have assessed the theoretical mutation rates and spectra in germ cells mostly by analyzing genetic markers and reporter genes in populations and pedigrees. This study reported the direct measurement of germline mutations by whole-genome sequencing of cultured spermatogonial stem cells in mice, namely germline stem (GS) cells, together with multipotent GS (mGS) cells that spontaneously dedifferentiated from GS cells. GS cells produce functional sperm that can generate offspring by transplantation into seminiferous tubules, whereas mGS cells contribute to germline chimeras by microinjection into blastocysts in a manner similar to embryonic stem cells. The estimated mutation rate of GS and mGS cells was approximately 0.22 × 10⁻⁹ and 1.0 × 10⁻⁹ per base per cell population doubling, respectively, indicating that GS cells have a lower mutation rate compared to mGS cells. GS and mGS cells also showed distinct mutation patterns, with C-to-T transition as the most frequent in GS cells and C-to-A transversion as the most predominant in mGS cells. By karyotype analysis, GS cells showed recurrent trisomy of chromosomes 15 and 16, whereas mGS cells frequently exhibited chromosomes 1, 6, 8, and 11 amplifications, suggesting that distinct chromosomal abnormalities confer a selective growth advantage for each cell type in vitro. These data provide the basis for studying germline mutations and a foundation for the future utilization of GS cells for reproductive technology and clinical applications. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2021 | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Developmental biology | en |
dc.subject | DNA | en |
dc.subject | Evolution | en |
dc.subject | Genetics | en |
dc.subject | Stem cells | en |
dc.title | Genomic stability of mouse spermatogonial stem cells in vitro | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Scientific Reports | en |
dc.identifier.volume | 11 | - |
dc.relation.doi | 10.1038/s41598-021-03658-1 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 24199 | - |
dc.identifier.pmid | 34921203 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19K22512 | - |
datacite.awardNumber | 19H05750 | - |
datacite.awardNumber | 19H04906 | - |
datacite.awardNumber | 18H04882 | - |
datacite.awardNumber | 18H05281 | - |
datacite.awardNumber | 18H02935 | - |
datacite.awardNumber | 18H02429 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K22512/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-19H05750/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H04906/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-18H04882/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H05281/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02935/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02429/ | - |
dc.identifier.eissn | 2045-2322 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | ヒト精子幹細胞の機能解析および培養系確立 | ja |
jpcoar.awardTitle | 受精卵全能性を統御する遺伝子群の単離と機能解析 | ja |
jpcoar.awardTitle | 精子幹細胞に由来する子孫が行動様式に及ぼす影響 | ja |
jpcoar.awardTitle | 性決定に関わる抑制性ヒストン修飾の役割 | ja |
jpcoar.awardTitle | 精子幹細胞のアンチエイジング機構の解明 | ja |
jpcoar.awardTitle | ヒト精子幹細胞の長期培養系の確立 | ja |
jpcoar.awardTitle | 生殖系列サイクルの遺伝的安定性の発生制御メカニズム | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス