ダウンロード数: 61

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.bbrc.2021.12.066.pdf3.08 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAndo, Yutaen
dc.contributor.authorOkeyo, Kennedy Omondien
dc.contributor.authorAdachi, Taijien
dc.contributor.alternative安藤, 悠太ja
dc.contributor.alternative安達, 泰治ja
dc.date.accessioned2022-06-22T07:42:08Z-
dc.date.available2022-06-22T07:42:08Z-
dc.date.issued2022-01-29-
dc.identifier.urihttp://hdl.handle.net/2433/274518-
dc.description.abstractAssembly of pluripotent stem cells to initiate self-organized tissue formation on engineered scaffolds is an important process in stem cell engineering. Pluripotent stem cells are known to exist in diverse pluripotency states, with heterogeneous subpopulations exhibiting differential gene expression levels, but how such diverse pluripotency states orchestrate tissue formation is still an unrevealed question. In this study, using microstructured adhesion-limiting substrates, we aimed to clarify the contribution to self-organized layer formation by mouse embryonic stem cells in different pluripotency states: ground and naïve state. We found that while ground state cells as well as sorted REX1-high expression cells formed discontinuous cell layers with limited lateral spread, naïve state cells could successfully self-organize to form a continuous layer by progressive mesh closure within 3 days. Using sequential immunofluorescence microscopy to examine the mesh closure process, we found that KRT8+ cells were particularly localized around unfilled holes, occasionally bridging the holes in a manner suggestive of their role in the closure process. These results highlight that compared with ground state cells, naïve state cells possess a higher capability to contribute to self-organized layer formation by mesh closure. Thus, this study provides insights with implications for the application of stem cells in scaffold-based tissue engineering.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2021 The Authors. Published by Elsevier Inc.en
dc.rightsThis is an open access article under the Creative Commons Attribution 4.0 International license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectEmbryonic stem cellsen
dc.subjectPluripotencyen
dc.subjectNaïve stateen
dc.subjectGround stateen
dc.subjectLayer formationen
dc.subjectMesh substratesen
dc.titlePluripotency state of mouse ES cells determines their contribution to self-organized layer formation by mesh closure on microstructured adhesion-limiting substratesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBiochemical and Biophysical Research Communicationsen
dc.identifier.volume590-
dc.identifier.spage97-
dc.identifier.epage102-
dc.relation.doi10.1016/j.bbrc.2021.12.066-
dc.textversionpublisher-
dc.identifier.pmid34973536-
dcterms.accessRightsopen access-
datacite.awardNumber20H02594-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H02594/-
dc.identifier.pissn0006-291X-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle血液脳関門の忠実な3次元モデ ルの構築による選択的物質輸送 メカニズムの研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons