このアイテムのアクセス数: 59

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s12859-021-03993-0.pdf1.94 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorLiu, Pengyuen
dc.contributor.authorSong, Jiangningen
dc.contributor.authorLin, Chun-Yuen
dc.contributor.authorAkutsu, Tatsuyaen
dc.contributor.alternative阿久津, 達也ja
dc.date.accessioned2022-06-24T00:53:20Z-
dc.date.available2022-06-24T00:53:20Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2433/274534-
dc.description.abstract[Background] Human dicer is an enzyme that cleaves pre-miRNAs into miRNAs. Several models have been developed to predict human dicer cleavage sites, including PHDCleav and LBSizeCleav. Given an input sequence, these models can predict whether the sequence contains a cleavage site. However, these models only consider each sequence independently and lack interpretability. Therefore, it is necessary to develop an accurate and explainable predictor, which employs relations between different sequences, to enhance the understanding of the mechanism by which human dicer cleaves pre-miRNA. [Results] In this study, we develop an accurate and explainable predictor for human dicer cleavage site – ReCGBM. We design relational features and class features as inputs to a lightGBM model. Computational experiments show that ReCGBM achieves the best performance compared to the existing methods. Further, we find that features in close proximity to the center of pre-miRNA are more important and make a significant contribution to the performance improvement of the developed method. [Conclusions] The results of this study show that ReCGBM is an interpretable and accurate predictor. Besides, the analyses of feature importance show that it might be of particular interest to consider more informative features close to the center of the pre-miRNA in future predictors.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.publisherBMCen
dc.rights© The Author(s) 2021.en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectDicer cleavage siteen
dc.subjectGradient boosting machineen
dc.subjectMachine learningen
dc.subjectCleavage sitesen
dc.titleReCGBM: a gradient boosting-based method for predicting human dicer cleavage sitesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBMC Bioinformaticsen
dc.identifier.volume22-
dc.relation.doi10.1186/s12859-021-03993-0-
dc.textversionpublisher-
dc.identifier.artnum63-
dc.identifier.pmid33568063-
dcterms.accessRightsopen access-
datacite.awardNumber18H04113-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H04113/-
dc.identifier.eissn1471-2105-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle離散原像問題の解析と応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons