このアイテムのアクセス数: 87

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41598-021-04230-7.pdf3.71 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorWang, Feiqien
dc.contributor.authorChen, Yun-Tien
dc.contributor.authorYang, Jinn-Moonen
dc.contributor.authorAkutsu, Tatsuyaen
dc.contributor.alternative阿久津, 達也ja
dc.date.accessioned2022-06-24T00:53:40Z-
dc.date.available2022-06-24T00:53:40Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/274537-
dc.description.abstractProtein kinase-inhibitor interactions are key to the phosphorylation of proteins involved in cell proliferation, differentiation, and apoptosis, which shows the importance of binding mechanism research and kinase inhibitor design. In this study, a novel machine learning module (i.e., the WL Box) was designed and assembled to the Prediction of Interaction Sites of Protein Kinase Inhibitors (PISPKI) model, which is a graph convolutional neural network (GCN) to predict the interaction sites of protein kinase inhibitors. The WL Box is a novel module based on the well-known Weisfeiler-Lehman algorithm, which assembles multiple switch weights to effectively compute graph features. The PISPKI model was evaluated by testing with shuffled datasets and ablation analysis using 11 kinase classes. The accuracy of the PISPKI model with the shuffled datasets varied from 83 to 86%, demonstrating superior performance compared to two baseline models. The effectiveness of the model was confirmed by testing with shuffled datasets. Furthermore, the performance of each component of the model was analyzed via the ablation study, which demonstrated that the WL Box module was critical. The code is available at https://github.com/feiqiwang/PISPKI.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2022en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectComputational biology and bioinformaticsen
dc.subjectComputational modelsen
dc.subjectMachine learningen
dc.subjectProtein analysisen
dc.titleA novel graph convolutional neural network for predicting interaction sites on protein kinase inhibitors in phosphorylationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScientific Reportsen
dc.identifier.volume12-
dc.relation.doi10.1038/s41598-021-04230-7-
dc.textversionpublisher-
dc.identifier.artnum229-
dc.identifier.pmid34997142-
dcterms.accessRightsopen access-
datacite.awardNumber18H04113-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H04113/-
dc.identifier.eissn2045-2322-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle離散原像問題の解析と応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons