ダウンロード数: 39

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2217-08.pdf5.53 MBAdobe PDF見る/開く
タイトル: Random Dynamical Systems of Regular Polynomial Maps on $mathbb{C}$$^{2}$ (Integrated Research on Random Dynamical Systems and Multi-Valued Dynamical Systems)
著者: Sumi, Hiroki
著者名の別形: 角, 大輝
発行日: Apr-2022
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2217
開始ページ: 89
終了ページ: 99
抄録: We introduce the notion of mean stability in i.i.d. random (holomorphic) 2-dimensional dynamical systems. We can see that a generic random dynamical system of regular polynomial maps on ℙ² (the complex 2-dimensional projective space) having an attractor in the line at infinity, is mean stable. If a random holomorphic dynamical system on ℙ² is mean stable then for each z ∈ ℙ² for a.e. orbit starting with z, the Lyapunov exponent is negative. If a random holomorphic dynamical system on ℙ² is mean stable, then for any z ∈ ℙ², the orbit of the Dirac measure at z under the iterations of the dual map of the transition operator converges to a periodic cycle of probability measures. Note that the above statements cannot hold for deterministic dynamics of a single regular polynomial map f with deg(f) ≥ 2. We see many randomness-induced phenomena (phenomena in random dynamical systems which cannot hold for iteration dynamics of single maps). In this talk, we have seen randomness-induced order.
URI: http://hdl.handle.net/2433/275514
出現コレクション:2217 ランダム力学系および多価写像力学系理論の総合的研究

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。