ダウンロード数: 66

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s10237-013-0539-3.pdf1.08 MBAdobe PDF見る/開く
タイトル: Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation
著者: Kameo, Yoshitaka  KAKEN_id
Adachi, Taiji  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-5280-4156 (unconfirmed)
著者名の別形: 亀尾, 佳貴
安達, 泰治
キーワード: Bone remodeling
Cancellous bone
Interstitial fluid flow
Canaliculus
Mathematical model
Functional adaptation
発行日: Aug-2014
出版者: Springer Science and Business Media LLC
誌名: Biomechanics and Modeling in Mechanobiology
巻: 13
号: 4
開始ページ: 851
終了ページ: 860
抄録: Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.
著作権等: This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10237-013-0539-3
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/275768
DOI(出版社版): 10.1007/s10237-013-0539-3
PubMed ID: 24174063
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。