このアイテムのアクセス数: 131

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
978-1-0716-1983-4_7.pdf2.15 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorZhou, Hangen
dc.contributor.authorKaneko, Taikopaulen
dc.contributor.authorIsozaki, Naotoen
dc.contributor.authorYokokawa, Ryujien
dc.contributor.alternative周, 航ja
dc.contributor.alternative金子, 泰洸ポールja
dc.contributor.alternative磯﨑, 直人ja
dc.contributor.alternative横川, 隆司 ja
dc.date.accessioned2022-08-05T04:03:00Z-
dc.date.available2022-08-05T04:03:00Z-
dc.date.issued2022-
dc.identifier.isbn9781071619834-
dc.identifier.urihttp://hdl.handle.net/2433/275788-
dc.descriptionPart of the Methods in Molecular Biology book series (MIMB, volume 2430)en
dc.description.abstractMicrotubule (MT)-motor systems show promise as nanoscale actuator platforms for performing molecular manipulations in nanobiotechnology and micro total analysis systems. These systems have been demonstrated to exert a variety of functions, including the concentration, transportation, and detection of molecular cargos. Although gliding direction control of MTs is necessary for these applications, most direction control methods are currently conducted using micro/nanofabricated guiding structures and/or flow, magnetic, and electric field forces. These control methods force all MTs to exhibit identical gliding behaviors and destinations. In this chapter, we describe an active multidirectional control method for MT without guiding tracks. The bottom-up molecular design allowed MTs to be guided in designated directions under an electric field in a microfluidic device. By designing the stiffness and surface charge density of MTs, three types of MT (Stiff-MT, Soft-MT, and Charged soft-MT) with different mechanical and electrical properties are prepared. The gliding directions within an electric field are predicted according to the measured stiffness and electrophoretic mobility. Finally, the Stiff-MTs are separated from Soft-MTs and Charged soft-MTs with a microfluidic sorter.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-1-0716-1983-4_7en
dc.rightsThe full-text file will be made open to the public on 28 April 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectMicrotubuleen
dc.subjectStiffnessen
dc.subjectElectrical propertyen
dc.subjectMultidirectional controlen
dc.subjectTrajectory predictionen
dc.subjectSortingen
dc.titleDesign of Mechanical and Electrical Properties for Multidirectional Control of Microtubulesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleMicrotubulesen
dc.identifier.spage105-
dc.identifier.epage119-
dc.relation.doi10.1007/978-1-0716-1983-4_7-
dc.textversionauthor-
dc.identifier.pmid35476328-
dcterms.accessRightsopen access-
datacite.date.available2023-04-28-
datacite.awardNumber20H00330-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H00330/-
dc.identifier.pissn1064-3745-
dc.identifier.eissn1940-6029-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleナノ加工技術により明らかにするモータタンパク質の協働性ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。