ダウンロード数: 69

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
tcbb.2021.3065535.pdf815.56 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorGuvencpaltun, Betulen
dc.contributor.authorKaski, Samuelen
dc.contributor.authorMamitsuka, Hiroshien
dc.contributor.alternative馬見塚, 拓ja
dc.date.accessioned2022-08-08T23:49:20Z-
dc.date.available2022-08-08T23:49:20Z-
dc.date.issued2022-07-
dc.identifier.urihttp://hdl.handle.net/2433/275805-
dc.description.abstractDetecting predictive biomarkers from multi-omics data is important for precision medicine, to improve diagnostics of complex diseases and for better treatments. This needs substantial experimental efforts that are made difficult by the heterogeneity of cell lines and huge cost. An effective solution is to build a computational model over the diverse omics data, including genomic, molecular, and environmental information. However, choosing informative and reliable data sources from among the different types of data is a challenging problem. We propose DIVERSE, a framework of Bayesian importance-weighted tri- and bi-matrix factorization(DIVERSE3 or DIVERSE2) to predict drug responses from data of cell lines, drugs, and gene interactions. DIVERSE integrates the data sources systematically, in a step-wise manner, examining the importance of each added data set in turn. More specifically, we sequentially integrate five different data sets, which have not all been combined in earlier bioinformatic methods for predicting drug responses. Empirical experiments show that DIVERSE clearly outperformed five other methods including three state-of-the-art approaches, under cross-validation, particularly in out-of-matrix prediction, which is closer to the setting of real use cases and more challenging than simpler in-matrix prediction. Additionally, case studies for discovering new drugs further confirmed the performance advantage of DIVERSE.en
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectDrugsen
dc.subjectCanceren
dc.subjectBioinformaticsen
dc.subjectData modelsen
dc.subjectBayes methodsen
dc.subjectChemicalsen
dc.subjectProteinsen
dc.subjectPersonalized medicineen
dc.subjectdrug response predictionen
dc.subjectmachine learningen
dc.subjectdata integrationen
dc.titleDIVERSE: Bayesian Data IntegratiVE learning for precise drug ResponSE predictionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE/ACM Transactions on Computational Biology and Bioinformaticsen
dc.identifier.volume19-
dc.identifier.issue4-
dc.identifier.spage2197-
dc.identifier.epage2207-
dc.relation.doi10.1109/tcbb.2021.3065535-
dc.textversionpublisher-
dc.identifier.pmid33705322-
dcterms.accessRightsopen access-
datacite.awardNumber16H02868-
datacite.awardNumber19H04169-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H02868/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04169/-
dc.identifier.pissn1545-5963-
dc.identifier.eissn1557-9964-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle複数行列データからのデータ因子構造推定ja
jpcoar.awardTitle複数のテンソルからの効率的なデータ構造推定ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons