ダウンロード数: 69
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
tcbb.2021.3065535.pdf | 815.56 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Guvencpaltun, Betul | en |
dc.contributor.author | Kaski, Samuel | en |
dc.contributor.author | Mamitsuka, Hiroshi | en |
dc.contributor.alternative | 馬見塚, 拓 | ja |
dc.date.accessioned | 2022-08-08T23:49:20Z | - |
dc.date.available | 2022-08-08T23:49:20Z | - |
dc.date.issued | 2022-07 | - |
dc.identifier.uri | http://hdl.handle.net/2433/275805 | - |
dc.description.abstract | Detecting predictive biomarkers from multi-omics data is important for precision medicine, to improve diagnostics of complex diseases and for better treatments. This needs substantial experimental efforts that are made difficult by the heterogeneity of cell lines and huge cost. An effective solution is to build a computational model over the diverse omics data, including genomic, molecular, and environmental information. However, choosing informative and reliable data sources from among the different types of data is a challenging problem. We propose DIVERSE, a framework of Bayesian importance-weighted tri- and bi-matrix factorization(DIVERSE3 or DIVERSE2) to predict drug responses from data of cell lines, drugs, and gene interactions. DIVERSE integrates the data sources systematically, in a step-wise manner, examining the importance of each added data set in turn. More specifically, we sequentially integrate five different data sets, which have not all been combined in earlier bioinformatic methods for predicting drug responses. Empirical experiments show that DIVERSE clearly outperformed five other methods including three state-of-the-art approaches, under cross-validation, particularly in out-of-matrix prediction, which is closer to the setting of real use cases and more challenging than simpler in-matrix prediction. Additionally, case studies for discovering new drugs further confirmed the performance advantage of DIVERSE. | en |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | This work is licensed under a Creative Commons Attribution 4.0 License. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Drugs | en |
dc.subject | Cancer | en |
dc.subject | Bioinformatics | en |
dc.subject | Data models | en |
dc.subject | Bayes methods | en |
dc.subject | Chemicals | en |
dc.subject | Proteins | en |
dc.subject | Personalized medicine | en |
dc.subject | drug response prediction | en |
dc.subject | machine learning | en |
dc.subject | data integration | en |
dc.title | DIVERSE: Bayesian Data IntegratiVE learning for precise drug ResponSE prediction | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | IEEE/ACM Transactions on Computational Biology and Bioinformatics | en |
dc.identifier.volume | 19 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 2197 | - |
dc.identifier.epage | 2207 | - |
dc.relation.doi | 10.1109/tcbb.2021.3065535 | - |
dc.textversion | publisher | - |
dc.identifier.pmid | 33705322 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 16H02868 | - |
datacite.awardNumber | 19H04169 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H02868/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04169/ | - |
dc.identifier.pissn | 1545-5963 | - |
dc.identifier.eissn | 1557-9964 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 複数行列データからのデータ因子構造推定 | ja |
jpcoar.awardTitle | 複数のテンソルからの効率的なデータ構造推定 | ja |
出現コレクション: | 学術雑誌掲載論文等 |
このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス