このアイテムのアクセス数: 112

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
5.0062659.pdf7.33 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSakajo, Takashien
dc.contributor.authorKrishnamurthy, Vikas S.en
dc.contributor.alternative坂上, 貴之ja
dc.date.accessioned2022-08-09T00:10:11Z-
dc.date.available2022-08-09T00:10:11Z-
dc.date.issued2022-06-
dc.identifier.urihttp://hdl.handle.net/2433/275807-
dc.description.abstractWe construct point vortex equilibria with strengths quantized by multiples of 2 π in a fixed background vorticity field on the surface of a curved torus. The background vorticity consists of two terms: first, a term exponentially related to the stream function and a second term arising from the curvature of the torus, which leads to a Liouville-type equation for the stream function. By using a stereographic projection of the torus onto an annulus in a complex plane, the Liouville-type equation admits a class of exact solutions, given in terms of a loxodromic function on the annulus. We show that appropriate choices of the loxodromic function in the solution lead to stationary vortex patterns with [Formula: see text] point vortices of identical strengths, [Formula: see text]. The quantized point vortices are stationary in the sense that they are equilibria of a “one-way interaction” model where the evolution of point vortices is subject to the continuous background vorticity, while the background vorticity distribution is not affected by the velocity field induced by the point vortices. By choosing loxodromic functions continuously dependent on a parameter and taking appropriate limits with respect to this parameter, we show that there are solutions with inhomogeneous point vortex strengths, in which the exponential part of the background vorticity disappears. The point vortices are always located at the innermost and outermost rings of the torus owing to the curvature effects. The topological features of the streamlines are found to change as the modulus of the torus changes.en
dc.language.isoeng-
dc.publisherAIP Publishingen
dc.rights© 2022 Author(s). Published under an exclusive license by AIP Publishing.en
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in [Takashi Sakajo and Vikas S. Krishnamurthy , "Quantized point vortex equilibria in a one-way interaction model with a Liouville-type background vorticity on a curved torus", J. Math. Phys. 63, 063101 (2022)] and may be found at https://doi.org/10.1063/5.0062659.en
dc.rightsThe full-text file will be made open to the public on 08 June 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.titleQuantized point vortex equilibria in a one-way interaction model with a Liouville-type background vorticity on a curved torusen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Mathematical Physicsen
dc.identifier.volume63-
dc.identifier.issue6-
dc.relation.doi10.1063/5.0062659-
dc.textversionpublisher-
dc.identifier.artnum063101-
dcterms.accessRightsopen access-
datacite.date.available2023-06-08-
datacite.awardNumber18H01136-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H01136/-
dc.identifier.pissn0022-2488-
dc.identifier.eissn1089-7658-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle曲面上の渦力学:曲面の幾何がもたらす新しい流体運動の数理科学ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。