このアイテムのアクセス数: 138
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.jcrysgro.2020.125929.pdf | 1.64 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kato, Shota | en |
dc.contributor.author | Kim, Sanghong | en |
dc.contributor.author | Kano, Manabu | en |
dc.contributor.author | Fujiwara, Toshiyuki | en |
dc.contributor.author | Mizuta, Masahiko | en |
dc.contributor.alternative | 加藤, 祥太 | ja |
dc.contributor.alternative | 金, 尚弘 | ja |
dc.contributor.alternative | 加納, 学 | ja |
dc.date.accessioned | 2022-08-10T08:53:56Z | - |
dc.date.available | 2022-08-10T08:53:56Z | - |
dc.date.issued | 2021-01 | - |
dc.identifier.uri | http://hdl.handle.net/2433/275825 | - |
dc.description.abstract | More than 95% of 300 mm diameter single-crystal silicon ingots, the raw material for semiconductors, are produced by the Czochralski process. The demand for improving yield, throughput, and control performance has been increasing. The present study developed a gray-box model that can predict controlled variables from manipulated variables with higher accuracy than the conventional first-principle model (Zheng et al., 2018), aiming at realizing model predictive control of the Czochralski process. The proposed gray-box model used a statistical model to predict the temperature gradient of the crystal at the solid–liquid interface , which was constant in the first-principle model. The crystal length and the melt temperature are used as the input variables to predict . The prediction accuracy of the proposed gray-box model was compared with that of the first-principle model using real process data obtained during the production of four silicon ingots. The results demonstrated that the proposed model reduced the root mean square errors of the crystal radius, the crystal growth rate, and the heater temperature by 94.1%, 62.7%, and 70.6% on average, respectively. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2020. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license. | en |
dc.rights | The full-text file will be made open to the public on 1 January 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | A1. Gray-box model | en |
dc.subject | A1. Growth models | en |
dc.subject | A2. Czochralski method | en |
dc.subject | A2. Single crystal growth | en |
dc.subject | A2. Industrial crystallization | en |
dc.subject | B2. Semiconducting silicon | en |
dc.title | Gray-box modeling of 300 mm diameter Czochralski single-crystal Si production process | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Crystal Growth | en |
dc.identifier.volume | 553 | - |
dc.relation.doi | 10.1016/j.jcrysgro.2020.125929 | - |
dc.textversion | author | - |
dc.identifier.artnum | 125929 | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2023-01-01 | - |
dc.identifier.pissn | 0022-0248 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス