ダウンロード数: 140

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
lsa.202201591.pdf6.61 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorImoto, Yusukeen
dc.contributor.authorNakamura, Tomonorien
dc.contributor.authorEscolar, G, Emersonen
dc.contributor.authorYoshiwaki, Michioen
dc.contributor.authorKojima, Yojien
dc.contributor.authorYabuta, Yukihiroen
dc.contributor.authorKatou, Yoshitakaen
dc.contributor.authorYamamoto, Takuyaen
dc.contributor.authorHiraoka, Yasuakien
dc.contributor.authorSaitou, Mitinorien
dc.contributor.alternative井元, 佑介ja
dc.contributor.alternative中村, 友紀ja
dc.contributor.alternative吉脇, 理雄ja
dc.contributor.alternative小島, 洋児ja
dc.contributor.alternative藪田, 幸宏ja
dc.contributor.alternative加藤, 嘉崇ja
dc.contributor.alternative山本, 拓也ja
dc.contributor.alternative平岡, 裕章ja
dc.contributor.alternative斎藤, 通紀ja
dc.date.accessioned2022-08-23T02:00:10Z-
dc.date.available2022-08-23T02:00:10Z-
dc.date.issued2022-12-
dc.identifier.urihttp://hdl.handle.net/2433/275925-
dc.description1細胞データ解析の精度が飛躍的に向上する前処理法の開発. 京都大学プレスリリース. 2022-08-09.ja
dc.descriptionClearing the mist hiding the genome. 京都大学プレスリリース. 2022-08-09.en
dc.description.abstractSingle-cell RNA sequencing (scRNA-seq) can determine gene expression in numerous individual cells simultaneously, promoting progress in the biomedical sciences. However, scRNA-seq data are high-dimensional with substantial technical noise, including dropouts. During analysis of scRNA-seq data, such noise engenders a statistical problem known as the curse of dimensionality (COD). Based on high-dimensional statistics, we herein formulate a noise reduction method, RECODE (resolution of the curse of dimensionality), for high-dimensional data with random sampling noise. We show that RECODE consistently resolves COD in relevant scRNA-seq data with unique molecular identifiers. RECODE does not involve dimension reduction and recovers expression values for all genes, including lowly expressed genes, realizing precise delineation of cell fate transitions and identification of rare cells with all gene information. Compared with representative imputation methods, RECODE employs different principles and exhibits superior overall performance in cell-clustering, expression value recovery, and single-cell–level analysis. The RECODE algorithm is parameter-free, data-driven, deterministic, and high-speed, and its applicability can be predicted based on the variance normalization performance. We propose RECODE as a powerful strategy for preprocessing noisy high-dimensional data.en
dc.language.isoeng-
dc.publisherLife Science Alliance, LLCen
dc.rights© 2022 Imoto et al.en
dc.rightsThis article is available under a Creative Commons License (Attribution 4.0 International).en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titleResolution of the curse of dimensionality in single-cell RNA sequencing data analysisen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleLife Science Allianceen
dc.identifier.volume5-
dc.identifier.issue12-
dc.relation.doi10.26508/lsa.202201591-
dc.textversionpublisher-
dc.identifier.artnume202201591-
dc.addressInstitute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto Universityen
dc.addressInstitute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University; The Hakubi Center for Advanced Research, Kyoto Universityen
dc.addressGraduate School of Human Development and Environment, Kobe University; Center for Advanced Intelligence Project, RIKENen
dc.addressCenter for Advanced Intelligence Project, RIKENen
dc.addressInstitute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University; Center for iPS Cell Research and Application, Kyoto Universityen
dc.addressInstitute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto Universityen
dc.addressInstitute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University; Center for Advanced Intelligence Project, RIKEN; Center for iPS Cell Research and Application, Kyoto Universityen
dc.addressInstitute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University; Center for Advanced Intelligence Project, RIKEN; Center for Advanced Study, Kyoto University Institute for Advanced Study, Kyoto Universityen
dc.addressInstitute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University; Center for iPS Cell Research and Application, Kyoto Universityen
dc.identifier.pmid35944930-
dc.relation.urlhttps://ashbi.kyoto-u.ac.jp/ja/news/20220809_research-result_imoto-nakamura/-
dc.relation.urlhttps://ashbi.kyoto-u.ac.jp/news/20220809_research-result_imoto-nakamura/-
dcterms.accessRightsopen access-
datacite.awardNumberJPMJPR2021-
datacite.awardNumber18K14714-
datacite.awardNumber20H05761-
datacite.awardNumberJPMJCR15D3-
datacite.awardNumberJPMJMI22G1-
datacite.awardNumber17H06098-
datacite.awardNumber22H04920-
datacite.awardNumber.urihttps://projectdb.jst.go.jp/grant/JST-PROJECT-20345209/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-18K14714/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PLANNED-20H05761/-
datacite.awardNumber.urihttps://projectdb.jst.go.jp/grant/JST-PROJECT-15656429/-
datacite.awardNumber.urihttps://projectdb.jst.go.jp/grant/JST-PROJECT-22682401/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-17H06098/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-22H04920/-
dc.identifier.eissn2575-1077-
jpcoar.funderName科学技術振興機構ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName科学技術振興機構ja
jpcoar.funderName科学技術振興機構ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle多重解像度の細胞分化構造解析システムの確立ja
jpcoar.awardTitleヒト多能性幹細胞における分化偏向性の解消ja
jpcoar.awardTitle臓器形成期までの生体内情報取得と生理的Ex vivo culture法の確立ja
jpcoar.awardTitleソフトマター記述言語の創造に向けた位相的データ解析理論の構築ja
jpcoar.awardTitle未来医療を創出する4次元トポロジカルデータ解析数理共通基盤の開発ja
jpcoar.awardTitleヒト生殖細胞発生機構の解明とその試験管内再構成ja
jpcoar.awardTitle試験管内再構成系に基づくヒト卵母細胞発生機構の解明とその応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons