このアイテムのアクセス数: 318

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ejrad.2022.110294.pdf2.36 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFukushima, Yasuhiroen
dc.contributor.authorFushimi, Yasutakaen
dc.contributor.authorFunaki, Takeshien
dc.contributor.authorSakata, Akihikoen
dc.contributor.authorHinoda, Takuyaen
dc.contributor.authorNakajima, Satoshien
dc.contributor.authorSakamoto, Ryoen
dc.contributor.authorYoshida, Kazumichien
dc.contributor.authorMiyamoto, Susumuen
dc.contributor.authorNakamoto, Yujien
dc.contributor.alternative福島, 康宏ja
dc.contributor.alternative伏見, 育崇ja
dc.contributor.alternative舟木, 健史ja
dc.contributor.alternative坂田, 昭彦ja
dc.contributor.alternative日野田, 卓也ja
dc.contributor.alternative中島, 諭ja
dc.contributor.alternative坂本, 亮ja
dc.contributor.alternative吉田, 和道ja
dc.contributor.alternative宮本, 享ja
dc.contributor.alternative中本, 裕士ja
dc.date.accessioned2022-08-25T04:05:24Z-
dc.date.available2022-08-25T04:05:24Z-
dc.date.issued2022-06-
dc.identifier.urihttp://hdl.handle.net/2433/275960-
dc.description.abstract[Purpose] The aim of this study was to examine the evaluation of ultra-high-resolution computed tomography angiography (UHR CTA) images in moyamoya disease (MMD) reconstructed with hybrid iterative reconstruction (Hybrid-IR), model-based iterative reconstruction (MBIR), and deep learning reconstruction (DLR). [Methods] This retrospective study with institutional review board approval included patients with clinically suspected MMD who underwent UHR CTA between January 2018 and July 2020. CTA images were reconstructed with three reconstruction methods. Qualitative visualization was evaluated in comparison with digital subtraction angiography. Quantitative evaluation included assessment of edge sharpness, full width at half maximum (FWHM), vessel contrast, and tissue signal-to-noise ratio (SNR[tissue]). One-way analysis of variance was used to analyze differences. In addition, reconstruction time were assessed. [Results] Qualitative evaluation of CTA for 33 sides did not differ significantly between reconstruction methods. In quantitative evaluation for 54 patients, edge sharpness for right and left cortical segments of the middle cerebral artery was significantly higher for Hybrid-IR than for other reconstructions. No significant difference was seen between MBIR and DLR. Edge sharpness for STA-MCA bypass was significantly higher for Hybrid-IR than for MBIR, but no significant difference was seen between Hybrid-IR and DLR. FWHM for STA-MCA showed no significant difference between the three reconstruction methods. DLR displayed the highest SNR[tissue]. The time required for reconstruction was 40 s for Hybrid-IR, 2580 s for MBIR, and 180 s for DLR. [Conclusion] UHR CTA with DLR adequately visualized vessels in patients with MMD within a clinically feasible reconstruction time.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.en
dc.rightsThe full-text file will be made open to the public on 1 June 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectDeep learningen
dc.subjectImage reconstructionen
dc.subjectDigital subtraction angiographyen
dc.subjectX-ray computed tomographyen
dc.titleEvaluation of moyamoya disease in CT angiography using ultra-high-resolution computed tomography: application of deep learning reconstructionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleEuropean Journal of Radiologyen
dc.identifier.volume151-
dc.relation.doi10.1016/j.ejrad.2022.110294-
dc.textversionauthor-
dc.identifier.artnum110294-
dc.identifier.pmid35427840-
dcterms.accessRightsopen access-
datacite.date.available2023-06-01-
datacite.awardNumber18K07711-
datacite.awardNumber19K17266-
datacite.awardNumber21K15826-
datacite.awardNumber21K15623-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K07711/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K17266/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K15826/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K15623/-
dc.identifier.pissn0720-048X-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle圧縮センシングの脳・頸部MRIへの応用ja
jpcoar.awardTitle急性期脳梗塞および脳血管異常のリアルタイム検出ja
jpcoar.awardTitlePETとMRIを活用した神経膠腫の分子生物学的プロファイルに迫る術前診断法の確立ja
jpcoar.awardTitle神経変性疾患希少疾患データベース作成と画像診断支援アルゴリズムに関する研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons