このアイテムのアクセス数: 52

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
fms.2021.24.pdf1.07 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIto, Kazuhiroen
dc.contributor.authorIto, Tetsushien
dc.contributor.authorKoshikawa, Teruhisaen
dc.contributor.alternative伊藤, 和広ja
dc.contributor.alternative伊藤, 哲史ja
dc.contributor.alternative越川, 皓永ja
dc.date.accessioned2022-09-29T06:55:50Z-
dc.date.available2022-09-29T06:55:50Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2433/276398-
dc.description.abstractWe give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism to the arithmetic of K3 surfaces over finite fields. We prove that every K3 surface of finite height over a finite field admits a characteristic 0 lifting whose generic fibre is a K3 surface with complex multiplication. Combined with the results of Mukai and Buskin, we prove the Tate conjecture for the square of a K3 surface over a finite field. To obtain these results, we construct an analogue of Kisin’s algebraic group for a K3 surface of finite height and construct characteristic 0 liftings of the K3 surface preserving the action of tori in the algebraic group. We obtain these results for K3 surfaces over finite fields of any characteristics, including those of characteristic 2 or 3 .en
dc.language.isoeng-
dc.publisherCambridge University Press (CUP)en
dc.rights© The Author(s), 2021. Published by Cambridge University Pressen
dc.rightsThis is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subject11G18: Arithmetic aspects of modular and Shimura varietiesen
dc.subject11G15: Complex multiplication and moduli of abelian varietiesen
dc.subject14G35: Modular and Shimura varietiesen
dc.subject14J28: $K3$ surfaces and Enriques surfacesen
dc.titleCM liftings of K3 surfaces over finite fields and their applications to the Tate conjectureen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleForum of Mathematics, Sigmaen
dc.identifier.volume9-
dc.relation.doi10.1017/fms.2021.24-
dc.textversionpublisher-
dc.identifier.artnume29-
dcterms.accessRightsopen access-
datacite.awardNumber18J22191-
datacite.awardNumber20674001-
datacite.awardNumber26800013-
datacite.awardNumber20K14284-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18J22191/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20674001/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26800013/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K14284/-
dc.identifier.eissn2050-5094-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle志村多様体とp進的手法を用いた代数曲面とTate予想の研究ja
jpcoar.awardTitle志村多様体を核とした数論幾何学,ガロア表現,保型表現の総合的研究ja
jpcoar.awardTitle志村多様体の数論幾何と非可換類体論ja
jpcoar.awardTitle数論幾何学におけるコホモロジーの研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons