このアイテムのアクセス数: 52
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
fms.2021.24.pdf | 1.07 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ito, Kazuhiro | en |
dc.contributor.author | Ito, Tetsushi | en |
dc.contributor.author | Koshikawa, Teruhisa | en |
dc.contributor.alternative | 伊藤, 和広 | ja |
dc.contributor.alternative | 伊藤, 哲史 | ja |
dc.contributor.alternative | 越川, 皓永 | ja |
dc.date.accessioned | 2022-09-29T06:55:50Z | - |
dc.date.available | 2022-09-29T06:55:50Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://hdl.handle.net/2433/276398 | - |
dc.description.abstract | We give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism to the arithmetic of K3 surfaces over finite fields. We prove that every K3 surface of finite height over a finite field admits a characteristic 0 lifting whose generic fibre is a K3 surface with complex multiplication. Combined with the results of Mukai and Buskin, we prove the Tate conjecture for the square of a K3 surface over a finite field. To obtain these results, we construct an analogue of Kisin’s algebraic group for a K3 surface of finite height and construct characteristic 0 liftings of the K3 surface preserving the action of tori in the algebraic group. We obtain these results for K3 surfaces over finite fields of any characteristics, including those of characteristic 2 or 3 . | en |
dc.language.iso | eng | - |
dc.publisher | Cambridge University Press (CUP) | en |
dc.rights | © The Author(s), 2021. Published by Cambridge University Press | en |
dc.rights | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | 11G18: Arithmetic aspects of modular and Shimura varieties | en |
dc.subject | 11G15: Complex multiplication and moduli of abelian varieties | en |
dc.subject | 14G35: Modular and Shimura varieties | en |
dc.subject | 14J28: $K3$ surfaces and Enriques surfaces | en |
dc.title | CM liftings of K3 surfaces over finite fields and their applications to the Tate conjecture | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Forum of Mathematics, Sigma | en |
dc.identifier.volume | 9 | - |
dc.relation.doi | 10.1017/fms.2021.24 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | e29 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 18J22191 | - |
datacite.awardNumber | 20674001 | - |
datacite.awardNumber | 26800013 | - |
datacite.awardNumber | 20K14284 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18J22191/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20674001/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26800013/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K14284/ | - |
dc.identifier.eissn | 2050-5094 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 志村多様体とp進的手法を用いた代数曲面とTate予想の研究 | ja |
jpcoar.awardTitle | 志村多様体を核とした数論幾何学,ガロア表現,保型表現の総合的研究 | ja |
jpcoar.awardTitle | 志村多様体の数論幾何と非可換類体論 | ja |
jpcoar.awardTitle | 数論幾何学におけるコホモロジーの研究 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス