このアイテムのアクセス数: 104
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
journal.pcbi.1009265.pdf | 3.35 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Koide, Hiroki | en |
dc.contributor.author | Kodera, Noriyuki | en |
dc.contributor.author | Bisht, Shveta | en |
dc.contributor.author | Takada, Shoji | en |
dc.contributor.author | Terakawa, Tsuyoshi | en |
dc.contributor.alternative | 小出, 洋輝 | ja |
dc.contributor.alternative | 高田, 彰二 | ja |
dc.contributor.alternative | 寺川, 剛 | ja |
dc.date.accessioned | 2022-10-12T01:39:46Z | - |
dc.date.available | 2022-10-12T01:39:46Z | - |
dc.date.issued | 2021-07 | - |
dc.identifier.uri | http://hdl.handle.net/2433/276673 | - |
dc.description.abstract | The condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown. Here, we conducted atomic force microscopy imaging of the budding yeast condensin holo-complex and used this data as basis for coarse-grained molecular dynamics simulations to model the hinge structure in a transient open conformation. We then simulated the dsDNA binding to open and closed hinge conformations, predicting that dsDNA binds to the outside surface when closed and to the outside and inside surfaces when open. Our simulations also suggested that the hinge can close around dsDNA bound to the inside surface. Based on these simulation results, we speculate that the conformational change of the hinge domain might be essential for the dsDNA binding regulation and play roles in condensin-mediated DNA-loop extrusion. | en |
dc.language.iso | eng | - |
dc.publisher | Public Library of Science (PLoS) | en |
dc.rights | © 2021 Koide et al. | en |
dc.rights | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Crystal structure | en |
dc.subject | Biochemical simulations | en |
dc.subject | Biophysical simulations | en |
dc.subject | Protein structure prediction | en |
dc.subject | Electrostatics | en |
dc.subject | Saccharomyces cerevisiae | en |
dc.subject | Atomic force microscopy | en |
dc.subject | Protein structure | en |
dc.title | Modeling of DNA binding to the condensin hinge domain using molecular dynamics simulations guided by atomic force microscopy | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | PLOS Computational Biology | en |
dc.identifier.volume | 17 | - |
dc.identifier.issue | 7 | - |
dc.relation.doi | 10.1371/journal.pcbi.1009265 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | e1009265 | - |
dc.identifier.pmid | 34329301 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19H03194 | - |
datacite.awardNumber | 19H05392 | - |
datacite.awardNumber | 19H05260 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H03194/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H05392/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H05260/ | - |
dc.identifier.pissn | 1553-734X | - |
dc.identifier.eissn | 1553-7358 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | DNAカーテンと粗視化シミュレーションによるコンデンシン分子モーターの機構解明 | ja |
jpcoar.awardTitle | 金銀・ナノ粒子を用いたコンデンシン分子モーターの超高分解能DNAカーテン測定 | ja |
jpcoar.awardTitle | DNAカーテン測定によるヒストン化学修飾がクロマチン凝集に与える影響の解明 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス