このアイテムのアクセス数: 104

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
journal.pcbi.1009265.pdf3.35 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKoide, Hirokien
dc.contributor.authorKodera, Noriyukien
dc.contributor.authorBisht, Shvetaen
dc.contributor.authorTakada, Shojien
dc.contributor.authorTerakawa, Tsuyoshien
dc.contributor.alternative小出, 洋輝ja
dc.contributor.alternative高田, 彰二ja
dc.contributor.alternative寺川, 剛ja
dc.date.accessioned2022-10-12T01:39:46Z-
dc.date.available2022-10-12T01:39:46Z-
dc.date.issued2021-07-
dc.identifier.urihttp://hdl.handle.net/2433/276673-
dc.description.abstractThe condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown. Here, we conducted atomic force microscopy imaging of the budding yeast condensin holo-complex and used this data as basis for coarse-grained molecular dynamics simulations to model the hinge structure in a transient open conformation. We then simulated the dsDNA binding to open and closed hinge conformations, predicting that dsDNA binds to the outside surface when closed and to the outside and inside surfaces when open. Our simulations also suggested that the hinge can close around dsDNA bound to the inside surface. Based on these simulation results, we speculate that the conformational change of the hinge domain might be essential for the dsDNA binding regulation and play roles in condensin-mediated DNA-loop extrusion.en
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)en
dc.rights© 2021 Koide et al.en
dc.rightsThis is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectCrystal structureen
dc.subjectBiochemical simulationsen
dc.subjectBiophysical simulationsen
dc.subjectProtein structure predictionen
dc.subjectElectrostaticsen
dc.subjectSaccharomyces cerevisiaeen
dc.subjectAtomic force microscopyen
dc.subjectProtein structureen
dc.titleModeling of DNA binding to the condensin hinge domain using molecular dynamics simulations guided by atomic force microscopyen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePLOS Computational Biologyen
dc.identifier.volume17-
dc.identifier.issue7-
dc.relation.doi10.1371/journal.pcbi.1009265-
dc.textversionpublisher-
dc.identifier.artnume1009265-
dc.identifier.pmid34329301-
dcterms.accessRightsopen access-
datacite.awardNumber19H03194-
datacite.awardNumber19H05392-
datacite.awardNumber19H05260-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H03194/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H05392/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H05260/-
dc.identifier.pissn1553-734X-
dc.identifier.eissn1553-7358-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleDNAカーテンと粗視化シミュレーションによるコンデンシン分子モーターの機構解明ja
jpcoar.awardTitle金銀・ナノ粒子を用いたコンデンシン分子モーターの超高分解能DNAカーテン測定ja
jpcoar.awardTitleDNAカーテン測定によるヒストン化学修飾がクロマチン凝集に与える影響の解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons