このアイテムのアクセス数: 112

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ptep_ptab091.pdf1.29 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIkeda, Tomonorien
dc.contributor.authorTakada, Atsushien
dc.contributor.authorAbe, Mitsuruen
dc.contributor.authorYoshikawa, Keien
dc.contributor.authorTsuda, Masayaen
dc.contributor.authorOgio, Shingoen
dc.contributor.authorSonoda, Shinyaen
dc.contributor.authorMizumura, Yoshitakaen
dc.contributor.authorYoshida, Yuraen
dc.contributor.authorTanimori, Toruen
dc.contributor.alternative池田, 智法ja
dc.contributor.alternative高田, 淳史ja
dc.contributor.alternative阿部, 光ja
dc.contributor.alternative吉川, 慶ja
dc.contributor.alternative津田, 雅弥ja
dc.contributor.alternative荻尾, 真吾ja
dc.contributor.alternative園田, 真也ja
dc.contributor.alternative水村, 好貴ja
dc.contributor.alternative吉田, 有良ja
dc.contributor.alternative谷森, 達ja
dc.date.accessioned2022-10-27T08:19:46Z-
dc.date.available2022-10-27T08:19:46Z-
dc.date.issued2021-08-
dc.identifier.urihttp://hdl.handle.net/2433/276910-
dc.description.abstractThe Electron-Tracking Compton Camera (ETCC), which is a complete Compton camera that tracks Compton scattering electrons with a gas micro time projection chamber, is expected to open up MeV gamma-ray astronomy. The technical challenge for achieving several degrees of the point-spread function is precise determination of the electron recoil direction and the scattering position from track images. We attempted to reconstruct these parameters using convolutional neural networks. Two network models were designed to predict the recoil direction and the scattering position. These models marked 41° of angular resolution and 2.1 mm of position resolution for 75 keV electron simulation data in argon-based gas at 2 atm pressure. In addition, the point-spread function of the ETCC was improved to 15° from 22° for experimental data from a 662 keV gamma-ray source. The performance greatly surpassed that using traditional analysis.en
dc.language.isoeng-
dc.publisherOxford University Press (OUP)en
dc.publisherPhysical Society of Japanen
dc.rights© The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan.en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Funded by SCOAP3en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.titleDevelopment of convolutional neural networks for an electron-tracking Compton cameraen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleProgress of Theoretical and Experimental Physicsen
dc.identifier.volume2021-
dc.identifier.issue8-
dc.relation.doi10.1093/ptep/ptab091-
dc.textversionpublisher-
dc.identifier.artnum083F01-
dcterms.accessRightsopen access-
datacite.awardNumber20K20428-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K20428/-
dc.identifier.eissn2050-3911-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle核ガンマ線イメージング観測が開く新しい太陽系及び外縁天体の描像ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons