このアイテムのアクセス数: 91

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
esurf-9-1091-2021.pdf4.85 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNaruse, Hajimeen
dc.contributor.authorNakao, Kentoen
dc.contributor.alternative成瀬, 元ja
dc.date.accessioned2022-10-27T08:20:14Z-
dc.date.available2022-10-27T08:20:14Z-
dc.date.issued2021-09-03-
dc.identifier.urihttp://hdl.handle.net/2433/276913-
dc.description.abstractAlthough in situ measurements in modern frequently occurring turbidity currents have been performed, the flow characteristics of turbidity currents that occur only once every 100 years and deposit turbidites over a large area have not yet been elucidated. In this study, we propose a method for estimating the paleo-hydraulic conditions of turbidity currents from ancient turbidites by using machine learning. In this method, we hypothesize that turbidity currents result from suspended sediment clouds that flow down a steep slope in a submarine canyon and into a gently sloping basin plain. Using inverse modeling, we reconstruct seven model input parameters including the initial flow depth, the sediment concentration, and the basin slope. A reasonable number (3500) of repetitions of numerical simulations using a one-dimensional layer-averaged model under various input parameters generates a dataset of the characteristic features of turbidites. This artificial dataset is then used for supervised training of a deep-learning neural network (NN) to produce an inverse model capable of estimating paleo-hydraulic conditions from data on the ancient turbidites. The performance of the inverse model is tested using independently generated datasets. Consequently, the NN successfully reconstructs the flow conditions of the test datasets. In addition, the proposed inverse model is quite robust to random errors in the input data. Judging from the results of subsampling tests, inversion of turbidity currents can be conducted if an individual turbidite can be correlated over 10 km at approximately 1 km intervals. These results suggest that the proposed method can sufficiently analyze field-scale turbidity currents.en
dc.language.isoeng-
dc.publisherCopernicus GmbHen
dc.rights© Author(s) 2021.en
dc.rightsThis work is distributed under the Creative Commons Attribution 4.0 License.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titleInverse modeling of turbidity currents using an artificial neural network approach: verification for field applicationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleEarth Surface Dynamicsen
dc.identifier.volume9-
dc.identifier.issue5-
dc.identifier.spage1091-
dc.identifier.epage1109-
dc.relation.doi10.5194/esurf-9-1091-2021-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber26287127-
datacite.awardNumber20H01985-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26287127/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H01985/-
dc.identifier.pissn2196-6311-
dc.identifier.eissn2196-632X-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle津波混濁流の発生条件と堆積機構:新しい混濁流発生メカニズムの解明ja
jpcoar.awardTitleタービダイトは地震・津波を記録するのか?:深層学習逆解析による解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons