このアイテムのアクセス数: 89

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41467-022-33604-2.pdf4.23 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKitamura, N.en
dc.contributor.authorAmano, T.en
dc.contributor.authorOmura, Y.en
dc.contributor.authorBoardsen, S. A.en
dc.contributor.authorGershman, D. J.en
dc.contributor.authorMiyoshi, Y.en
dc.contributor.authorKitahara, M.en
dc.contributor.authorKatoh, Y.en
dc.contributor.authorKojima, H.en
dc.contributor.authorNakamura, S.en
dc.contributor.authorShoji, M.en
dc.contributor.authorSaito, Y.en
dc.contributor.authorYokota, S.en
dc.contributor.authorGiles, B. L.en
dc.contributor.authorPaterson, W. R.en
dc.contributor.authorPollock, C. J.en
dc.contributor.authorBarrie, A. C.en
dc.contributor.authorSkeberdis, D. G.en
dc.contributor.authorKreisler, S.en
dc.contributor.authorLe Contel, O.en
dc.contributor.authorRussell, C. T.en
dc.contributor.authorStrangeway, R. J.en
dc.contributor.authorLindqvist, P.-A.en
dc.contributor.authorErgun, R. E.en
dc.contributor.authorTorbert, R. B.en
dc.contributor.authorBurch, J. L.en
dc.contributor.alternative北村, 成寿ja
dc.contributor.alternative天野, 孝伸ja
dc.contributor.alternative大村, 善治ja
dc.contributor.alternative三好, 由純ja
dc.contributor.alternative北原, 理弘ja
dc.contributor.alternative加藤, 雄人ja
dc.contributor.alternative小嶋, 浩嗣ja
dc.contributor.alternative中村, 紗都子ja
dc.contributor.alternative小路, 真史ja
dc.contributor.alternative齋藤, 義文ja
dc.contributor.alternative横田, 勝一郎ja
dc.date.accessioned2022-11-01T09:27:54Z-
dc.date.available2022-11-01T09:27:54Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/276980-
dc.description宇宙空間で電子からプラズマの波へのエネルギー供給を直接捉えた --効率の良い電磁波動成長の理論を観測で実証--. 京都大学プレスリリース. 2022-10-31.ja
dc.description.abstractElectromagnetic whistler-mode waves in space plasmas play critical roles in collisionless energy transfer between the electrons and the electromagnetic field. Although resonant interactions have been considered as the likely generation process of the waves, observational identification has been extremely difficult due to the short time scale of resonant electron dynamics. Here we show strong nongyrotropy, which rotate with the wave, of cyclotron resonant electrons as direct evidence for the locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves using ultra-high temporal resolution data obtained by NASA’s Magnetospheric Multiscale (MMS) mission in the magnetosheath. The nongyrotropic electrons carry a resonant current, which is the energy source of the wave as predicted by the nonlinear wave growth theory. This result proves the nonlinear wave growth theory, and furthermore demonstrates that the degree of nongyrotropy, which cannot be predicted even by that nonlinear theory, can be studied by observations.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2022en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectAuroraen
dc.subjectMagnetospheric physicsen
dc.titleDirect observations of energy transfer from resonant electrons to whistler-mode waves in magnetosheath of Earthen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNature Communicationsen
dc.identifier.volume13-
dc.relation.doi10.1038/s41467-022-33604-2-
dc.textversionpublisher-
dc.identifier.artnum6259-
dc.addressInstitute for Space-Earth Environmental Research, Nagoya University; Department of Earth and Planetary Science, Graduate School of Science, the University of Tokyoen
dc.addressDepartment of Earth and Planetary Science, Graduate School of Science, the University of Tokyoen
dc.addressResearch Institute for Sustainable Humanosphere, Kyoto Universityen
dc.addressNASA Goddard Space Flight Center; Goddard Planetary Heliophysics Institute, University of Marylanden
dc.addressNASA Goddard Space Flight Centeren
dc.addressInstitute for Space-Earth Environmental Research, Nagoya Universityen
dc.addressDepartment of Geophysics, Graduate school of Science, Tohoku Universityen
dc.addressDepartment of Geophysics, Graduate school of Science, Tohoku Universityen
dc.addressResearch Institute for Sustainable Humanosphere, Kyoto Universityen
dc.addressInstitute for Space-Earth Environmental Research, Nagoya Universityen
dc.addressInstitute for Space-Earth Environmental Research, Nagoya Universityen
dc.addressInstitute of Space and Astronautical Science, Japan Aerospace Exploration Agencyen
dc.addressDepartment of Earth and Space Science, Graduate School of Science, Osaka Universityen
dc.addressNASA Goddard Space Flight Centeren
dc.addressNASA Goddard Space Flight Centeren
dc.addressDenali Scientificen
dc.addressNASA Goddard Space Flight Center; Aurora Engineeringen
dc.addressNASA Goddard Space Flight Center; a.i. solutions Incen
dc.addressNASA Goddard Space Flight Center; Aurora Engineeringen
dc.addressLaboratoire de Physique des Plasmas, CNRS/Sorbonne Université/Université Paris-Saclay/Observatoire de Paris/Ecole Polytechnique Institut Polytechnique de Parisen
dc.addressDepartment of Earth, Planetary, and Space Science, University of California, Los Angelesen
dc.addressDepartment of Earth, Planetary, and Space Science, University of California, Los Angelesen
dc.addressRoyal Institute of Technologyen
dc.addressLaboratory for Atmospheric and Space Physics, University of Coloradoen
dc.addressDepartment of Physics, University of New Hampshire; Southwest Research Instituteen
dc.addressSouthwest Research Instituteen
dc.identifier.pmid36307443-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2022-10-31-0-
dcterms.accessRightsopen access-
datacite.awardNumber17H06140-
datacite.awardNumber18H03727-
datacite.awardNumber21K13979-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H06140/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H03727/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K13979/-
dc.identifier.eissn2041-1723-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle宇宙プラズマ中の電磁サイクロトロン波による電子加速散乱機構の実証的研究ja
jpcoar.awardTitle粒子加速過程の直接計測による惑星放射線帯生成モデルの実証ja
jpcoar.awardTitleプラズマ波動による電子の散乱に関する新しい理論の実証的研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons